首页> 外文会议>Canadian Congress of Applied Mechanics >Optimal Vibration Control of Smart Laminated Beams Using Layerwise Theory
【24h】

Optimal Vibration Control of Smart Laminated Beams Using Layerwise Theory

机译:二层理论的智能层压光束的最佳振动控制

获取原文

摘要

Laminated composite structures have been widely used for aerospace applications such as satellite, and aircraft components. Excessive vibration in these structures may result in instability and/or poor functionality of the system. In order to control the stability of the laminated structures during operation, conventional laminated composite structures have been combined with sensing and actuating capabilities of piezoelectric materials to develop "smart laminated structures". Efficiency and accuracy of the static and dynamic responses of the smart systems highly depend on the mathematical modeling of the structure and the control strategy. Thus, to achieve the desirable performance and functionality of the smart laminated systems, these two aspects should be accurately represented in the modeling. Mathematical modeling of smart laminated structures has been performed mainly by using Equivalent-Single Layer (ESL) theories [1]. However, due to the existence of different materials and geometries such as piezoelectric materials, graphite/epoxy and adhesive, smart laminated structures contain strong inhomogenities through the thickness. Thus, to account for the material and electro-mechanical inhomogenities in these hybrid laminates, it is required to develop a robust electro-mechanical model to provide accurate prediction of static and dynamic responses of the structure. It has been approved that the layerwise displacement theory can provide high efficiency (compared to 3D models) and accuracy (compared to ESL) for the analysis of laminated structures [2]. On the other hand, dynamic performance and functionality of smart laminated structures for vibration control strongly depends on appropriate control mechanism and strategy. Research works on vibration control of laminated composite structures are very limited and still there are many issues that remain unexplored. Previous works are mainly limited to a negative velocity feedback as the controller and application of ESL theories to model the structure [4]. It has been shown that for the isotropic materials, Linear Quadratic Regulator (LQR) [3] is the most efficient approach (compared to classical strategies) to determine the optimal feedback gain [4]. To the best knowledge of the authors, optimal control has not been utilized for laminated composite structures in general, and also the layerwise displacement theory has not been used for the mathematical modeling for vibration control.
机译:层压复合结构已广泛用于航空航天应用,如卫星和飞机部件。这些结构中的过度振动可能导致系统的不稳定性和/或差。为了控制操作期间层叠结构的稳定性,传统的层压复合结构已经结合了压电材料的感测和致动能力,以开发“智能层压结构”。智能系统的静态和动态响应的效率和准确性高度取决于结构的数学建模和控制策略。因此,为了实现智能层压系统的理想性能和功能,应该在建模中准确地表示这两个方面。智能叠层结构的数学建模主要是通过使用等效单层(ESL)理论[1]进行的。然而,由于存在不同的材料和几何形状,例如压电材料,石墨/环氧树脂和粘合剂,智能层压结构通过厚度含有强的偏离型。因此,为了考虑这些混合层叠层中的材料和电动机电偏离性,需要开发牢固的电力机械模型,以提供对结构的静态和动态响应的精确预测。已经批准,层状位移理论可以提供高效率(与3D模型相比)和准确性(与ESL相比)用于分析层压结构[2]。另一方面,用于振动控制的智能层压结构的动态性能和功能强烈取决于适当的控制机制和策略。研究有关振动控制的叠层复合结构的振动控制非常有限,仍然存在许多问题仍未开发。以前的作品主要限于负速度反馈作为控制器的控制器和应用于结构的ESL理论[4]。已经表明,对于各向同性材料,线性二次调节器(LQR)[3]是最有效的方法(与经典策略)来确定最佳反馈增益[4]。为了获得作者的最佳知识,通常没有用于层压复合结构的最佳控制,并且还没有用于振动控制的数学建模的层状位移理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号