首页> 外文会议>International Biohydrometallurgy Symposium >Prediction of FNR regulated genes and metabolic pathways potentially involved in anaerobic growth of Acidithiohacillus ferrooxidans
【24h】

Prediction of FNR regulated genes and metabolic pathways potentially involved in anaerobic growth of Acidithiohacillus ferrooxidans

机译:FNR调节基因的预测潜在涉及酸性嗜酸性嗜酸盐的厌氧生长的基因和代谢途径

获取原文

摘要

Efficient bioleaching requires adequate access to oxygen to drive the biochemical reactions that underpin iron and sulfur oxidation and ultimately copper solubilization. However, microaerophilic or anaerobic conditions may occur in certain parts of the heap, especially in areas of intense microbial activity or in biofilms where oxygen gradients occur. Microaerophilic conditions have also been detected in pristine acidic environments and in abandoned bioleaching operations. An important microorganism in bioleaching at ambient temperatures is the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. In addition to its well established role in oxidative processes, it has been shown to be capable of reducing metals such as iron and sulfur, and the products of these reactions may promote passivation of mineral surfaces and impede efficient solubilization of copper. In an effort to advance our understanding of the genetic and physiological basis of anaerobic metabolism, gene clusters controlled by the master anaerobic transcriptional regulator FNR were predicted in the genome of A. ferrooxidans using bioinformatics techniques. These clusters were found to be associated with energy metabolism, nitrogen fixation and carbohydrate metabolism. The results not only support previous evidence for proposed anaerobic metabolic pathways but also identify new genetic components and pathways that may be important for anaerobic or microaerophilic growth of this microorganism.
机译:高效的生物浸渍需要足够的氧气获得氧气以驱动生产铁和硫氧化和最终铜溶解的生化反应。然而,在堆的某些部分中可能发生微肝菌或厌氧条件,特别是在激烈的微生物活性或氧梯度发生的生物膜区域。在原始酸性环境中也检测到微苯化的病症,并在废弃的生物浸入操作中检测到​​。在环境温度下的生物浸出中的重要微生物是培养的脱硫菌酸酐酸酸酸辛酸胆硼硼氧化物。除了在氧化过程中建立的良好作用之外,已经证明能够减少铁和硫的金属,这些反应的产物可以促进矿物表面的钝化并妨碍铜的有效溶解。努力推进我们对厌氧代谢的遗传和生理基础的理解,在使用生物信息技术的A.Forrooxidans的基因组中预测了由厌氧转录调节器FNR控制的基因簇。发现这些簇与能量代谢,氮固定和碳水化合物代谢相关。结果不仅支持以前的厌氧代谢途径的证据,还可以识别新的遗传成分和这种微生物的厌氧或微友氏生长可能重要的遗传成分和途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号