首页> 外文会议>International Conference on Structures Under Shock and Impact >Explosive shock and laser exposure of metallic and ceramic materials
【24h】

Explosive shock and laser exposure of metallic and ceramic materials

机译:金属和陶瓷材料的爆炸冲击和激光曝光

获取原文

摘要

Explosive shock and Q-switched laser exposure of metallic and ceramic materials have produced varied substructures and increased hardness that possibly emphasize the role of the attendant material structures and the nature of the defect substructures that are subsequently obtained. In metallic materials, Q-switched laser exposure is seen to result in extensive heating as well as shock wave passage effect, while the control of temperature in explosive detonation is seen to introduce shock effect and associated defect substructure. For example, explosive shock exposure of Al-Li 8090 alloy is seen to increase hardness, reduce activation energy for subsequent ageing, introduce precipitation, revealing the extensive role defect substructure plays in the ageing kinetics of this alloy. Shock loading of Molydenum at 150 kbar (for 2 μs) increases dislocation loop densities from 5x10~9/cm~3 to 4x10~(14)/cm~3 with 75% of the loop types analyzed being vacancy loops. Irradiations utilizing a Q-switched laser at also of Mo at fluences between 22 and 35 J/cm~2 produced residual effects ranging from increasing numbers of lattice vacancies and vacancy clusters to massive deformation, cavitation, and spallation along with melting. Finally, explosive shock exposure, at various calculated pressures, of Al_2O_3, Al_2O_3+ZrO_2, Al_2O_3+SiC (whisker), Al_2O_3+ZrO_2+SiC (whisker), showed no significant difference in mechanical properties of hot-pressed Al_2O_3+ZrO_2 composites with regard to shock treatment. Improved mechanical properties were occasionally found in shock-treated and hot-pressed whisker-reinforced alumina, although a direct relationship with shock pressure was not observed. The manuscript summarizes these different studies in delineating the role of shock waves passage in the subsequent material processing. This is an overview of these research projects and fuller details can be found in the cited references.
机译:金属和陶瓷材料的爆炸冲击和Q开关激光曝光产生了各种子结构和增加的硬度,其可能强调服务员材料结构的作用和随后获得的缺陷子结构的性质。在金属材料中,看到Q切换激光曝光导致易加热以及冲击波通道效果,而爆炸性爆炸中的温度控制被视为引入冲击效果和相关的缺陷子结构。例如,Al-Li 8090合金的爆炸冲击曝光可以增加硬度,降低随后老化的活化能量,引入沉淀,揭示这种合金老化动力学的广泛作用缺陷亚结构。在150 kbar(2μs)下钼的冲击载荷增加了5×10〜9 / cm〜3至4x10〜(14)/ cm〜3的位错环密度,75%的回路类型分析为空位回路。使用Mo的Q开关激光器的辐射在22至35 J / cm〜2之间产生的残留效应,从增加晶格空缺和空位簇的越来越多地变形,空化和散开以及熔化。最后,在Al_2O_3,Al_2O_3 + ZrO_2,Al_2O_3 + SiC(晶须),Al_2O_3 + SiC(晶须),Al_2O_3 + ZrO_2 + SiC(晶须)的爆炸冲击暴露在热压Al_2O_3 + ZrO_2复合材料的机械性能下没有显着差异关于休克治疗。偶尔发现改善的机械性能在休克处理和热压的晶须增强氧化铝中,尽管未观察到与冲击压力的直接关系。手稿总结了这些不同的研究在描绘了冲击波通道在随后的材料加工中的作用方面。这是这些研究项目的概述,并且可以在引用的参考文献中找到更全面的详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号