首页> 外文会议>MRS Meeting >Thin interfacial layers in polymer-based electronics.
【24h】

Thin interfacial layers in polymer-based electronics.

机译:基于聚合物基电子的薄界面层。

获取原文
获取外文期刊封面目录资料

摘要

Electronic devices based on organic materials are presently being developed. In these devices, the cathode interface and the nature of the charge carrying species are often of crucial importance. In that context, the behavior of lithium atoms deposited on the surfaces of ultra-thin spin-coated films of poly(dioctyl-fluorene), PFO, and of condensed molecular solid films of tris(8-hydroxyquinoline) aluminum, Alq_3, have been studied. The Li-atoms donate charges to the organic systems, leading to doping-induced electronic states in the otherwise forbidden energy gap. The changes in the electronic structure induced by charge transfer from the Li-atoms are different in the two materials studied, and depend upon the localization of the electronic states to which the electrons are transferred. In the case of the delocalized wave functions of the π-system of PFO, at low doping levels, the added charges lead to the formation of polaron states, while at higher doping concentrations, bipolaron states are formed. In the case of Alq_3, however, up to a level of three added electrons per molecule, the added electrons reside in states localized on each of the three ligands. The role of thin (~5 A) interfacial layers of LiF or CsF between poly(9,9-dioctylfluorene) polymer film and an aluminum electrode was studied as well. LiF-deposition on poly(9,9-dioctyl-fluorene) did not cause doping of the polymer films, nor did the LiF dissociate at the interface. No significant shifts in the binding energy of the core levels nor any changes in the work function occurred. Al-deposition on LiF/PFO films did not cause dissociation of LiF, unlike the case for Alq_3. We found that CsF does not dissociate when deposited on a polymer film. However, deposition of aluminum on CsF will cause dissociation with cesium n-doping the PFO film at the interface and fluorine likely reacting with aluminum to form A1F_3. When deposited onto either of sputter-cleaned Al surface or Al with native oxide layer (Al_xO_y), CsF also was found to dissociate at the interface. CsF does not dissociate for Au/CsF/PFO and CsF/Au interfaces, which emphasizes the crucial role aluminum plays in the process. The observed decomposition of CsF occurring upon Al deposition and following Cs-doping of the surface region of PFO likely enhances injection of electrons into organic layer improving device performance. Since CsF dissociation is independent of the underlying material, the Al/CsF/emissive-material structure could be effective for almost all types of polymer/organic based electronic devices.
机译:目前正在开发基于有机材料的电子设备。在这些装置中,阴极接口和电荷携带物种的性质通常是至关重要的。在这种情况下,沉积在Tris(8-羟基喹啉)铝的多薄旋涂膜,PFO和Tris(8-羟基喹啉)铝,Alq_3的冷凝分子固体膜的表面的表面上的锂原子的行为已经存在研究过。 Li-Atoms捐赠给有机系统的电荷,导致掺杂诱导的电子国家在其他禁止的能量隙中。由Li-Atoms的电荷转移引起的电子结构的变化在研究的两种材料中是不同的,并且取决于电子传递的电子状态的定位。在PFO的π-系统的分层波函数的情况下,在低掺杂水平下,添加的电荷导致极化态态的形成,而在较高的掺杂浓度下,形成双极态。然而,在ALQ_3的情况下,每分子的三个增加的电子水平,添加的电子位于三个配体中的每一个定位的状态。研究了聚(9,9-二羟基苯醚)​​聚合物膜和铝电极之间的LIF或CSF的薄(〜5A)界面层的作用。在聚(9,9-二辛基 - 芴)上的LiF沉积不会引起聚合物薄膜的掺杂,也没有在界面处解散。在核心水平的绑定能量中没有显着变化,也没有发生工作功能的任何变化。在LiF / PFO薄膜上的沉积不会导致LiF的解离,与Alq_3的情况不同。我们发现在沉积在聚合物膜上时,CSF不会消失。然而,CSF上的铝沉积将使铯的铯与界面的PFO膜进行解离,并且氟可能与铝反应形成A1F_3。当用天然氧化物层(AL_XO_Y)沉积到溅射清洁的Al表面或Al中,也发现CSF在界面处解离。 CSF对AU / CSF / PFO和CSF / AU接口不分离,这强调了该过程中的至关重要的铝。在Al沉积上发生的CSF和PFO表面区域的CSF的观察到分解可能会增加电子注入有机层改善装置性能。由于CSF解离与底层材料无关,因此Al / CSF /发光材料结构对于几乎所有类型的聚合物/有机电子器件都可以有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号