首页> 外文会议>International Technical Meeting of the Satellite Division of the Institute of Navigation >Regional TEC Model using Improved Neural Network and Its Application in Single Frequency Precise Point Positioning
【24h】

Regional TEC Model using Improved Neural Network and Its Application in Single Frequency Precise Point Positioning

机译:利用改进神经网络的区域TEC模型及其在单频精密点定位中的应用

获取原文

摘要

An improved neural network has been developed for estimating the total electron content (TEC) of the ionosphere using observations collected by a GPS network of double frequency GPS receivers. And a single frequency precise point positioning (PPP) software MPEPPP has been developed using neural network to mitigate the ionospheric delay. Ionospheric delay is the main error source of single frequency PPP. It shows large variations which are correlated with the solar activity, geo-magnetic influences etc. Since modeling the ionospheric delay is complicated, while one of the advantages of neural network is that it can fit any complicated surface very well, an improved two-layer back-propagation neural network has been designed to model the ionosphere delay in this paper, using Levenberg-Marquardt training method due to its rapid convergence properties and robustness. TEC values are extracted using polynomial model from the carrier phase observations of base stations. Then the epoch time, geomagnetic latitude and sun-fixed longitude of ionospheric pierce point, zenith distance and the station-satellite distance are set as the input neurons, and the corresponding TEC is the output neuron. The new model is tested and compared with the polynomial model using one week GPS observations of the Chinese Jiangsu province continuously operating reference Stations (JSCORS) covering more than 100,000 km{sup}2, and the distances of the selected base stations are all over 200 kilometers. The authors designed the single frequency PPP software MPEPPP, using the new ionospheric delay model and IGS precise orbit and clock products. Error sources such as troposphere delay, GPS antenna phase center offsets and variations, GPS satellite phase wind-up, earth rotation, earth tide and ocean tide loading etc, are also considered in the software. Numerical results show that the proposed model can achieve a better accuracy than polynomial model.
机译:已经开发了一种改进的神经网络,用于使用由双频GPS接收器的GPS网络收集的观察来估计电离层的总电子含量(TEC)。使用神经网络开发了单频精确点定位(PPP)软件MPEPPP以减轻电离层延迟。电离层延迟是单频PPP的主要误差源。它显示了与太阳能活动,地理磁影响等相关的大变化。由于对电离层延迟的建模复杂,而神经网络的一个优点是它可以很好地适合任何复杂的表面,这是一种改进的两层背部传播神经网络旨在使用Levenberg-Marquardt训练方法模拟本文的电离层延迟,因为其迅速的收敛性能和鲁棒性。使用来自基站的载波相位观察的多项式模型提取TEC值。然后将Enoch时间,地磁纬度和太阳固定经度的电离层穿孔点,天顶距离和站 - 卫星距离设置为输入神经元,并且相应的TEC是输出神经元。测试新模型与多项式模型使用一周的GPS观察,江苏省持续运行的参考站(JSCORS)覆盖超过10万公里} 2,以及所选基站的距离全部超过200公里。作者设计了单频PPP软件MPEPPP,采用新的电离层延迟模型和IGS精确轨道和时钟产品。在软件中也考虑了对流层延迟,GPS天线相位中心抵消,GPS卫星相位卷积,地球旋转,地球潮和海潮加载等的误差来源。数值结果表明,所提出的模型可以实现比多项式模型更好的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号