首页> 外文会议>Conference on optical microlithography >A Strategy for Optimizing Random Code Lithography Patterning in 0.18 um Generation Mask ROM
【24h】

A Strategy for Optimizing Random Code Lithography Patterning in 0.18 um Generation Mask ROM

机译:优化0.18 UM一代掩模ROM的随机代码光刻图案化的策略

获取原文

摘要

Among the non-volatize memory family, Mask ROM is the most cost competed product that wildly adopted in data storage application. The Mask ROM based on the 0.18 um technology generation is pushed to production in most of the advanced fabs that use KrF lithography. There are two critical steps in the process flow layers. Most of the existing studies deal with the small geometry poly patterning. The other challenge is to deal with random code implant layer. However, few studies have been done on the related problems. In a random code layer, the pattern merge algorithm is to fill random squares in a chessboard. The approach of merging X and Y will generate hole and post in a wafer. However, the corresponding two patterns (hole and post) are conflicted with each other either from the aerial theory or from the photo resist characteristics. It is difficult to achieve both resolution and PR loss requirements at the same time. However, experiments show that the strategy of applying the pattern merge algorithm with Y merge only is more flexible for lithography. The patterns change from hole and island to hole and trench. In this paper, we show an optimization methodology for Mask ROM random code implant layer (0.26um nominal CD in hole size and 0.5um nominal CD in post size) by using anal image and latent image such as Illumination conditions (numerical aperture and partial coherence), OPC (manual OPC and Automatically OPC), and interaction between antireflection layer and resist We have implemented the proposed strategy on real production wafers for validation. In particular, we will discuss the impacts on the basic process characteristics such as depth of focus, exposure latitude, PR loss, Kla defect inspection, cross-section profile, and electric test data.
机译:在非挥发内存系列中,Mask ROM是数据存储应用中的最具成本竞争的产品。基于0.18MUM技术生成的掩模ROM在使用KRF光刻的大多数先进的Fab中推动生产。过程流程层中有两个关键步骤。大多数现有研究处理小几何多图案。其他挑战是处理随机代码植入层。但是,对相关问题进行了很少的研究。在随机代码层中,模式合并算法是填充棋盘中的随机方块。合并x和y的方法将产生孔和柱子在晶圆中。然而,相应的两个图案(孔和柱)从鸟类理论或来自光致抗蚀特性彼此冲突。难以同时实现分辨率和PR损失要求。然而,实验表明,使用Y合并的模式合并算法的策略仅对光刻更加灵活。模式从孔和岛屿变为孔和沟槽。在本文中,我们通过使用肛门图像和潜在图像(诸如照明条件(数值孔径和部分连贯)来显示掩模ROM随机码头植入层(0.26um标称CD在孔尺寸下的孔尺寸CD和0.5um标称CD中的0.5um标称CD)的优化方法。(数值孔径和部分连贯),OPC(手动OPC和自动OPC),以及抗反射层和抵抗之间的相互作用,我们已经在实际生产晶片上实施了提出的策略进行验证。特别是,我们将讨论对焦点深度,曝光纬度,PR损失,KLA缺陷检查,横截面轮廓和电动测试数据的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号