首页> 外文会议>ASME/JSME Joint Fluids Engineering Conference >NUMERICAL SIMULATION OF FRANCIS AND KAPLAN TURBINES USING A HIGH-ORDER FINITE VOLUME METHOD
【24h】

NUMERICAL SIMULATION OF FRANCIS AND KAPLAN TURBINES USING A HIGH-ORDER FINITE VOLUME METHOD

机译:使用高阶有限体积法的弗朗西斯和卡普兰涡轮机的数值模拟

获取原文

摘要

Numerical simulations of Francis and Kaplan turbines are accomplished using a higher-order accurate, conservative, and robust technique based on the discontinuous Galerkin method. These numerical simulations are typically used in conjunction with experimental measurements on turbine models to design hydraulic machinery having higher efficiency operating under off-design conditions. Due to the complicated geometries of Francis and Kaplan runners, mesh generation is a very difficult task, and the resulting meshes are very distorted with highly skewed elements. The discontinuous Galerkin method uses a compact or elementwise representation of field variables, therefore it can deliver high accuracy on skewed meshes because it does not rely on reconstruction techniques (as Finite Volume methods) or on large stencils (as Finite Difference methods), techniques that are strongly dependent on the quality of the underlying mesh/grid. A new high-order accurate discontinuous Galerkin technique for convection-diffusion systems has been recently developed as an extension of the classical discontinuous Galerkin technique for convection dominated problems. This extension addresses problems involving diffusion (second-order derivatives) and is based on a weak imposition of continuity conditions on the state variables and on inviscid and diffusive fluxes across interelement and domain boundaries. The approximation of field variables is local to each element in the mesh, without continuity requirements across elements, therefore, this method can incorporate local adaptive refinements of the mesh very easily. Adaptive refinement of the mesh is extensively used when the solution requires better resolution, or simply when the initial mesh is too coarse- to deliver accurate solutions. Moreover, because of the elementwise representation of field variables, the order of polynomial approximation can be adapted element by element, without continuity constraints which are common to classical continuous approximations. There is a cost associated with handling interelement discontinuities in the basis functions, but the benefits by far compensate this additional cost. The robustness of this technique hinges precisely in using discontinuous functions to represent steep gradients, which typically create oscillations in classical high-order approximations when the underlying mesh is not fine enough. Numerical simulations of Francis and Kaplan turbines suggest that the method is very robust, and capable of delivering highly accurate solutions.
机译:Francis和卡普兰涡轮机的数值模拟使用基于间断Galerkin方法高阶准确的,保守的和强大的技术来完成。这些数值模拟通常用于对涡轮机的模型实验测量结合到设计具有非设计条件下更高的效率操作的液压机械。由于弗朗西斯和Kaplan参赛者的复杂的几何形状,网格生成是一个非常困难的任务,并且将所得网格非常与高度倾斜元件扭曲。的间断Galerkin方法使用场变量的紧凑或的elementwise表示,因此它可以在倾斜的网格提供高准确度,因为它不依赖于重建技术(如有限体积方法)或在大模板(如有限差分法),技术,强烈依赖于底层的网格/网格的质量。对于对流扩散系统的一个新的高阶准确间断有限元技术最近已经开发作为经典的间断有限元对流为主的问题的延伸。这是一个涉及扩散(二阶导数)和扩展地址的问题是基于对状态变量和横跨元件间和域边界的非粘性和扩散通量的连续性条件的弱拼版。场变量的逼近是本地的网格中的每个元件,而不横跨元件连续性要求,因此,这种方法可以结合的啮合很容易局部自适应精炼。网格自适应细化当解决方案需要更高的分辨率,或者仅仅当初始网格过于粗粒提供准确的解决方案被广泛使用。而且,由于场变量的elementwise表示的,多项式近似的顺序可以适于通过元件元件,而不连续性约束条件是共同的经典连续近似。有一个在基础功能处理元件间的不连续性相关的成本,但截至目前为止的利益补偿这一额外费用。这种技术的铰链的精确使用不连续函数来表示陡梯度,其典型地创建在古典高阶近似振荡当底层网不精足够的鲁棒性。弗朗西斯和卡普兰水轮机的数值模拟表明,该方法是非常强大的,并且能够提供高度精确的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号