首页> 外文会议>ASME/JSME Joint Fluids Engineering Conference >Studies on Compressible Viscous Flow in Turbomachinery Cascades Using an Improved k-ε Turbulence Model
【24h】

Studies on Compressible Viscous Flow in Turbomachinery Cascades Using an Improved k-ε Turbulence Model

机译:利用改进的K-ε湍流模型研究涡轮机械级联的可压缩粘性流动研究

获取原文
获取外文期刊封面目录资料

摘要

In the present work two-dimensional viscous flows through compressor and gas turbine blade cascades at transonic speed are analyzed by solving compressible N-S equations in the generalized coordinate system, so that sufficient number of grid points could be distributed in the boundary layer and wake regions. An efficient Implicit Approximate Factorization (IAF) finite difference scheme, originally developed by Beam-Warming, is used together with a higher order Total Variation Diminishing (TVD) scheme based on the MUSCL-type approach with the Roe's approximate Rieman solver for shock capturing. In order to predict the boundary layer turbulence characteristics, shock boundary layer interaction, transition from laminar to turbulent flow, etc. with sufficient accuracy, an improved low Reynolds number k-ε turbulence model developed by the authors is used. In this k-ε model, the low Reynolds number damping factors are defined as a function of turbulence Reynolds number which is only a rather general indicator of the degree of turbulence activity at any location in the flow rather than a specific function of the location itself. The emphasis in this paper is on the modeling of turbulence phenomena and the effect of grid topology on results of computations. Computations are carried out for different flow conditions of compressor and gas turbine blade cascades for which detailed and reliable information about shock location, shock losses, viscous losses, blade surface pressure distribution and overall performance are available. Comparison of computed results with the experimental data showed a very good agreement. The results demonstrated that the Navier-Stokes approach using the present k-ε turbulence model and higher order TVD scheme would lead to improved prediction of viscous flow phenomena in turbomachinery cascades.
机译:在本工作中,通过在广义坐标系中求解可压缩的N-S方程,通过调用压缩机和燃气涡轮叶片级联的二维粘性流动,从而可以在边界层和唤醒区域中分布足够数量的网格点。有效的隐式近似分解(IAF)有限差分方案最初由光束变暖开发,与基于Muscl型方法的高阶总变化递减(TVD)方案一起使用,具有用于冲击捕获的ROE近似Rieman求解器。为了预测边界层湍流特性,冲击边界层相互作用,从层流到湍流等,使用了由作者开发的改进的低雷诺数k-ε湍流模型。在该K-ε模型中,低雷诺数阻尼因子被定义为湍流雷诺数的函数,该雷诺数仅是流量的任何位置处的湍流活动程度的相当一般指示器,而不是位置本身的特定功能。本文的重点是湍流现象的建模和网格拓扑对计算结果的影响。为压缩机和燃气涡轮叶片级联的不同流动条件进行计算,其中有关冲击位置,冲击损失,粘性损耗,叶片表面压力分布和整体性能的详细和可靠的信息。计算结果与实验数据的比较显示了非常良好的一致性。结果表明,使用本发明的K-ε湍流模型和高阶TVD方案的Navier-Stokes方法将导致涡轮机级联的粘性流动现象的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号