首页> 外文会议>International Conference on Remediation of Chlorinated and Recalcitrant Compounds >Implementation of Bioaugmented Enhanced Anaerobic Dechlorination in a High-Groundwater-Velocity, Low-Organic Carbon Source Area(ABSTRACT)
【24h】

Implementation of Bioaugmented Enhanced Anaerobic Dechlorination in a High-Groundwater-Velocity, Low-Organic Carbon Source Area(ABSTRACT)

机译:在高地下水速度,低有机碳源区(摘要)中生物化增强增强的厌氧脱氯

获取原文

摘要

Physical inhibitions to bioremediation include certain ranges of hydraulic conductivity of the groundwater system. When low, hydraulic conductivity limits the practical distribution of treatment chemicals and when high, decreases residence time in the treatment zone and constrains the ability to induce and sustain a thorough treatment environment spatially and temporally. The effect of high hydraulic conductivity on the implementation of bioremediation was evaluated at a site where bioaugmented enhanced anaerobic dechlorination was implemented as the groundwater remedy. The site was characterized as having a naturally high groundwater velocity (500 feet per year) and loworganic carbon content (less than 1 milligram per liter). Groundwater was impacted by tetrachloroethene, trichloroethene and 1,1,1-trichloroethane and thorough mass destruction throughout the plume was critical to success; pockets of limited treatment were not an acceptable outcome given the risk factors at the site. Site hydrogeology can be summarized as having a relatively shallow (14 feet below ground surface) water table and high rate of groundwater flow in a relatively thin water-bearing zone. Sulfate reduction was anticipated to be the primary control on the utilization of carbon. The native population of D. ethenogenes was tested and found to be not sufficiently robust to complete the dechlorination process without bioaugmentation. Local regulatory conditions prevented the use of groundwater recirculation as a design technique, limiting available approaches to overcome the physical constraints on effective bioaugmentation.
机译:对生物化的物理抑制包括地下水系统的某些液压导电性。当低电平时,液压电导率限制了处理化学品的实际分布,当高时,减少治疗区中的停留时间,并限制在空间和时间上限制诱导和维持彻底治疗环境的能力。在生物化增强的厌氧脱氯的部位评估了高液压导电性对生物化实施的影响。作为地下水补救措施实施了生物化增强的厌氧脱氯。该部位的特征是具有天然高的地下水速度(每年500英尺)和低生成碳含量(每升小于1毫克)。地下水受四氯乙烯的影响,三氯乙烯和1,1,1-三氯乙烷和整个羽流的彻底的大规模破坏对成功至关重要;鉴于现场的风险因素,有限的治疗口袋不是可接受的结果。现场水文地质可以总结为在相对薄的含水区中具有相对较浅(14英尺以下的地面)水表和高速率的地下水流动。预计硫酸盐还原是对碳的利用的主要控制。 D.乙烯因的原生群体被测试,发现没有足够稳健,以完成没有生物沉积的脱氯过程。当地监管条件阻止使用地下水再循环作为设计技术,限制了可用的方法来克服有效生物沉积的物理限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号