首页> 外文会议>World Conference on Carbon >NITROGEN INTERACTION WITH SINGLE-WALL CARBON NANOTUBES PROBED VIA IN-SITU VIBRATIONAL SPECTROSCOPY
【24h】

NITROGEN INTERACTION WITH SINGLE-WALL CARBON NANOTUBES PROBED VIA IN-SITU VIBRATIONAL SPECTROSCOPY

机译:通过原位振动光谱探测单壁碳纳米管的氮相互作用

获取原文

摘要

The pore size of a carbon material dictates its performance in gas separation, storage, and catalytic applications. Generally speaking, methods for pore size analysis fall into two categories: (i) Methods that rely on fitting a thermodynamic model or model uptake calculations to experimental adsorption data, and (ii) Methods that attempt to directly characterize the pore structure, such as spectroscopy, diffraction, and electron microscopy. Specifically, small angle X-ray scattering (SAXS) is useful for crystalline porous materials, but generally not applicable to amorphous materials that do not scatter X-rays uniformly[1-3]; positron annihilation lifetime spectroscopy (PALS) is sensitive to pore size, as the lifetime of positronium is sensitive to the high electron density within pores [4-6]; transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) are useful for visualizing highly localized regions, and may be useful deducing pore size, particularly if or tomography is used [7]. All of these "direct" methods tend to be highly specialized, expensive, and/or not widely available. For porous carbon materials, which generally have irregular pore structure, gas adsorption is by far the most common method for deducing both surface area and pore size distribution. Either nitrogen or argon at their normal boiling points are used most frequently, although carbon dioxide at near ambient temperatures has advantages when there are diffusion limitations in micropores at low temperature [8]. Speaking quite generally, adsorption models can be categorized into classic thermodynamic models (such as the BET, Langmuir, H-K models), models derived from simulations (DFT, Non-local DFT), and/or models based on uniformity of adsorption potential.
机译:碳材料的孔径规定了其在气体分离,储存和催化应用中的性能。一般而言,孔径分析方法分为两类:(i)依赖于将热力学模型或模型摄取计算依赖于实验吸附数据的方法,以及试图直接表征孔结构的方法,例如光谱尺寸,衍射和电子显微镜。具体地,小角度X射线散射(SAX)可用于结晶多孔材料,但通常不适用于不均匀散射X射线的非晶材料[1-3];正电子湮没寿命光谱(PALS)对孔径敏感,因为正电子寿命对孔隙内的高电子密度敏感[4-6];透射电子显微镜(TEM)和/或扫描电子显微镜(SEM)可用于可视化高度局部区域,并且可能导致孔径,特别是如果使用或断层扫描[7]。所有这些“直接”方法往往高度专业,昂贵和/或不广泛可用。对于通常具有不规则孔隙结构的多孔碳材料,气体吸附是迄今为止推导表面积和孔径分布的最常见的方法。氮气或氩气在它们的正常沸点中最常用,尽管在近环境温度下的二氧化碳在低温下微孔中的扩散限制时具有优势[8]。通常说,吸附模型可以分类为经典的热力学模型(例如BET,Langmuir,H-K模型),从模拟(DFT,非局部DFT)和/或基于吸附电位均匀性的模型来源的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号