首页> 外文会议>World Conference on Carbon >MULTIPLE COLOR GRAPHENE AND TRANSITION-METAL D1CHALCOGENIDES QUANTUM DOTS
【24h】

MULTIPLE COLOR GRAPHENE AND TRANSITION-METAL D1CHALCOGENIDES QUANTUM DOTS

机译:多种彩色石墨烯和过渡金属D1Chalcogens量子点

获取原文

摘要

Graphene quantum dots (GQDs) have garnered an increasing interest as a promising new class of fluorophores as bio-imaging fluorescent markers, light emitting materials, and elements for photovoltaics. A prominent advantage of GQDs is their potential of replacing traditional semiconductor QDs for bio-imaging applications, in order to overcome toxicity associated with heavy metal ions present in QDs. GQDs have been synthesized using a variety of methods such as chemical breakdown of graphene oxide (GO)/carbon fibers (CF) or nano lithography, although both methods involve tedious multistep processes. Here, we report a two-step workflow to prepare multiple color graphene quantum dots with controllable diameters with mean values between 14 to 34 nm. Their optical properties are controlled by stoichiometry of an amine-containing molecule present in the reaction suspension. For biological application robust water soluble GQDs are required. So, we transfer the GQDs dispersed in methanol to water. Furthermore, the GQD particles exhibit two-photon fluorescence, measured on a home-made optical setup under Ti:sapphire near-infrared (NIR) pulsed-laser excitation. We also report on synthetic routes to metal dichalcogenide quantum dots (MDCQDs). While to date, very few works have been reported on these MDCQDs such as M0S2, and WS2, in which low quantum yields are obtained, complicated preparation steps are used, and material degradation was observed, here we employ a straightforward sonication method to prepare water-soluble M0S2 or WS2 QDs and enhanced their photo luminescence by a factor of nine by passivating their surface with amine groups. We demonstrate peptide binding to these particles by showing fluorescence resonance energy transfer (FRET) efficiency of maxima 28% from MoS2 to fluorescein isothiocyanate (FITC).
机译:石墨烯量子点(GQDS)已经获得了作为有希望的新类荧光团作为生物成像荧光标记,发光材料和用于光伏元件的兴趣越来越兴趣。 GQD的突出优点是它们对生物成像应用更换传统半导体QD的潜力,以克服与QD中存在的重金属离子相关的毒性。已经使用各种方法合成了GQD,例如石墨烯氧化物(GO)/碳纤维(CF)或纳米光刻的化学分解,但两种方法都涉及乏味的多步骤方法。在这里,我们报告了两步工作流程,以准备多个彩色石墨烯量子点,可控直径,平均值在14至34nm之间。它们的光学性质由在反应悬浮液中存在的含胺的分子的化学计量控制。对于生物应用,需要鲁棒水溶性GQD。因此,我们将分散在甲醇中的GQD分散到水中。此外,GQD颗粒在Ti下的自制光学设定上显示出两光晶荧光:蓝宝石近红外(NIR)脉冲激光激发。我们还将合成途径报告给金属二甲基甲基量子点(MDCQDS)。迄今为止,在这些M0S2和WS2的这些MDCQD上报告了很少的作品,其中获得低量子产率,使用复杂的制剂步骤,并且观察到材料降解,在这里我们采用了一种直接的超声处理方法来制备水-Soluble M0S2或WS2 QD,并通过用胺基钝化它们的表面来增强它们的照片发光。我们通过将Maxima 28%的荧光共振能量转移(FRET)效率从MOS2向荧光素异硫氰酸酯(FITC)来证明与这些颗粒的肽与这些颗粒结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号