首页> 外文会议>International Symposium on Air Breathing Engines >An improved streamline curvature-based design approach for transonic axial-flow compressor blading
【24h】

An improved streamline curvature-based design approach for transonic axial-flow compressor blading

机译:跨音轴流式压缩机碎片改进的简化曲率设计方法

获取原文

摘要

The increasing demand to obtain more accurate turbomachinery blading performance in the design and analysis process has led to the development of higher fidelity flow field models. Despite extensive flow field information can be collected from three-dimensional (3-D) Reynolds-averaged Navier-Stokes (RANS) numerical simulations; it comes at a high computational cost in terms of time and resources, particularly if a comprehensive design space is explored during optimization. In contrast, through-flow methods such as streamline curvature (SLC), provide a flow solution in minutes whilst offering acceptable results. Furthermore, if the SLC fidelity is improved, a more detailed component-blading study is expected. For this reason, a fully-detailed transonic flow framework was implemented and validated in an existing in-house two-dimensional (2-D) SLC compressor performance to improve the performance results fidelity in transonic conditions. The improvements consist of two sections: (1) blade-profile modelling; (2) flow field solution. The blade-profile modelling considers a 3-D blade-element-layout method to correctly model the sweep and lean angle, which determine the shock structure. The essential part of the transonic flow framework is its solution, formed of two parts: (1) a physics-based shock-wave model to predict its structure, and associated losses; (2) and a novel choking model to define the choke level for future spanwise mass flow redistribution. To demonstrate the functionality of the full comprehensive transonic-flow approach, the well-known NASA Rotor 67 compressor was used to prove that the inlet relative flow angle should be limited by the choking incidence at the required blade span locations. A 3-D RANS numerical simulation for the NASA Rotor 67 validated the transonic-flow model, showing minimum differences in the spanwise mass flow distribution for the choked off-design cases. The current improvements implemented in the 2-D SLC compressor/fan performance simulator enhance the fidelity not only in analysis mode, but also in design optimisation applications.
机译:在设计和分析过程中获得更准确的涡轮机械薄膜性能的需求越来越大导致了高保真流场模型的开发。尽管有广泛的流场信息,可以从三维(3-D)雷诺平均Navier-Stokes(RAN)数值模拟中收集;它在时间和资源方面以高计算成本,特别是如果在优化期间探讨了综合设计空间。相反,诸如流线曲率(SLC)的流动方法,在分子以分子提供流动溶液,同时提供可接受的结果。此外,如果SLC保真度得到改善,则预期更详细的组分血糖研究。因此,在现有的内部二维(2-D)SLC压缩机性能中实现和验证了完全详细的跨音流框架,以提高跨音条件下的性能结果。改进包括两个部分:(1)刀片型材建模; (2)流场解决方案。刀片型材建模考虑了3-D刀片元件布局方法,以正确模拟扫描和倾角,确定震动结构。跨音速流量框架的主要部分是其解决方案,由两部分形成:(1)基于物理的冲击波模型,以预测其结构和相关损失; (2)和一种新型窒息模型,用于定义未来血管大量流量再分配的扼流水平。为了展示全综合跨动力学方法的功能,使用众所周知的NASA转子67压缩机来证明入口相对流动角应该受到所需叶片跨度位置处的呼吸入射的限制。用于NASA转子67的3-D RAN数值模拟验证了跨音速模型,显示了窒息的非设计情况的翼展质量流量分布的最小差异。在2-D SLC压缩机/风扇性能模拟器中实现的电流改进不仅在分析模式下提升了保真度,也可以在设计优化应用中提高保真度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号