首页> 外文会议>International Fatigue Congress >Influence of minimum temperature on the thermomechanical fatigue of a directionally-solidified Ni-base superalloy
【24h】

Influence of minimum temperature on the thermomechanical fatigue of a directionally-solidified Ni-base superalloy

机译:最小温度对定向固化的Ni基超合金热机械疲劳的影响

获取原文

摘要

It is well understood that thermomechanical fatigue (TMF) lives are significantly influenced by the maximum temperature of the cycle since increasing temperature accelerates both creep and the coupled fatigue-oxidation effects, usually exponentially with increasing temperature. Hence, most TMF experiments focus on the impact of the maximum temperature of the cycle along with the phasing of the temperature and strain. Very little focus has been placed on the role of the minimum temperature of the TMF cycle. Usually the minimum temperature is chosen for experimental expediency and is not based on minimum temperature experienced in actual components. For example, in a gas turbine, the minimum temperature for an extended shutdown is near room temperature. This paper shows that out-of-phase TMF with lower minimum temperature while maintaining the same mechanical strain results in lower life. Possible explanations for the reduction in life include the increase in inelastic strain range due to the increase in elastic modulus at lower temperatures and microstructural changes that occur at elevated temperature, reducing the lower temperature yield strength. Both experiments and simulations using crystal viscoplasticity modeling show that the increase in elastic modulus with decreasing temperature leads to greater inelastic strain range and a commensurate reduction in fatigue life. This effect is just as important to consider as the influence of microstructure changes occurring at the elevated temperatures of the cycle.
机译:众所周知,由于增加的温度加速蠕变和耦合的疲劳 - 氧化效果,因此热机械疲劳(TMF)寿命受到循环的最高温度的显着影响,通常随着温度呈指数呈指数为指数。因此,大多数TMF实验专注于循环的最高温度的影响以及温度和菌株的相位。非常少的重点放在TMF周期的最小温度的作用上。通常选择最低温度用于实验权限,而不是基于实际组件中经历的最低温度。例如,在燃气轮机中,延长关断的最小温度在室温附近。本文表明,在保持相同机械应变的同时具有较低的最小温度的超相TMF导致寿命更低。用于减少生命的可能解释包括由于在升高温度下发生的弹性模量和显微结构变化而导致的无间质应变范围的增加,降低较低的温度屈服强度。使用晶体粘合性建模的实验和仿真表明,随着温度降低的增加,弹性模量的增加导致更大的无间质应变范围和疲劳寿命的相应降低。这种效果同样重要的是考虑在循环的升高温度下发生的微观结构变化的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号