首页> 外文会议>ASME/JSME Joint Fluids Engineering Conference >IDENTIFICATION OF LARGE SCALE STRUCTURES IN CAVITATING WAKES
【24h】

IDENTIFICATION OF LARGE SCALE STRUCTURES IN CAVITATING WAKES

机译:识别空化唤醒中的大规模结构

获取原文
获取外文期刊封面目录资料

摘要

Large-scale three-dimensional cavitating structures can be found in the wake of two-dimensional hydrofoils, as a result of sheet/cloud cavitation on the suction side. This type of cavitation produces unsteady lift on most hydrofoils, including the NACA 0015 hydrofoil studied here, but is periodic and therefore offers the potential for control. In addition to hydrofoils on marine vehicles complex cavitation characteristics are observed in many types of fluid machinery. Examples range from the high-pressure fuel pumps in the Space Shuttle Main Engine to a variety of hydroturbines. Associated with the deleterious effects of performance breakdown, noise, and vibration, there is a possibility of erosion. The purpose of this research is to investigate the two-phase flow structure in the wake of a hydrofoil undergoing unsteady partial cavitation using an integrated experimental/numerical approach. This topic provides both numerical and experimental challenges. A two-dimensional NACA 0015 hydrofoil was selected for study, because of its previous use by several investigators around the world. The simulation methodology is based on a Large Eddy Simulation (LES), using a barotropic phase model to couple the continuity and momentum equations. The complementary experiments were carried out at two different scales in two different water tunnels. Tests at the St. Anthony Falls Laboratory (SAFL) were carried out in a 0.19×0.19 m{sup}2 water tunnel and a geometrically scaled up series of tests was carried out in the 0.3×0.3 m{sup}2 water tunnel at the Versuchsanstalt fur Wasserbau (VAO) in Obernach, Germany. The tests were designed to complement each other and to capitalize on the special features of each facility. Time-resolved Particle Image Velocimetry (TR-PIV) was used at SAFL to confirm the existence of the large-scale flow structure observed with the LES.
机译:在吸入侧的片材/云空化的结果,可以在二维水翼之后找到大规模的三维空化结构。这种空化在大多数水翼上产生不稳定的升力,包括在此研究的NaCA 0015水靴,但是周期性,因此提供了控制的可能性。除了在海洋车辆上的水翼外,在许多类型的流体机械中观察到复杂的空化特性。示例范围从航天飞机主发动机的高压燃料泵到各种水闸。与性能崩溃,噪音和振动的有害影响有关,有可能侵蚀。本研究的目的是使用集成的实验/数值方法在经历不稳定的局部空化的水翼罐之后研究两相流动结构。本主题提供数值和实验挑战。选择了一种二维NaCA 0015水翼用于研究,因为它以前的几个研究人员在世界各地使用。模拟方法基于大涡流模拟(LES),使用波衡分魄的相位模型来耦合连续性和动量方程。在两个不同的水隧道中,在两个不同的鳞片下进行互补实验。在圣安东尼瀑布实验室(SAF1)的测试是在0.19×0.19米{Sup} 2水隧道中进行的,并且在0.3×0.3米{Sup} 2水隧道中进行几何上缩放的一系列测试Versuchsanstall毛皮Wasserbau(VAO)在奥伯纳赫,德国。测试旨在互相补充并利用每个设施的特殊功能。在SAF1中使用时间分辨的粒子图像速度(TR-PIV),以确认存在与LES观察到的大规模流动结构的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号