首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
【24h】

Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump

机译:大型空化涡流结构在轴流喷水泵性能故障中的作用的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Flow phenomena and mechanisms involved in cavitation breakdown, namely, a severe degradation of pump performance caused by cavitation, have been a longstanding puzzle. In this paper, results of high-speed imaging as well as pressure and performance measurements are used to elucidate the specific mechanism involved with cavitation breakdown within an axial waterjet pump. The experiments have been performed using geometrically identical aluminum and transparent acrylic rotors, the latter allowing uninhibited visual access to the cavitation phenomena within the blade passage. The observations demonstrate that interaction between the tip leakage vortex (TLV) and trailing edge of the attached cavitation near the rotor blade tip that covers the suction side (SS) of the blade plays a key role in processes leading to breakdown. In particular, the vortical cloud cavitation developing at the trailing edge of the sheet cavity near the blade tip is entrained and re-oriented by the TLV in a direction that is nearly perpendicular to the blade SS surface, and then convected downstream through the blade passage. Well above breakdown cavitation indices, these "perpendicular cavitating vortices" or PCVs occur in the region where blades do not overlap, and they only affect the local flow complexity with minimal impact on the global pump performance. With decreasing pressure and growing sheet cavitation coverage of the blade surface, this interaction occurs in the region where two adjacent rotor blades overlap, and the PCV extends from the SS surface of the originating blade to the pressure side (PS) of the neighboring blade. Cavitation breakdown begins when the PCV extends between blades, effectively blocking the tip region of the rotor passage. With further decrease in pressure, the PCVs grow in size and strength, and extend deeper into the passage, causing rapid degradation in performance. Accordingly, the casing pressure measurements confirm that attachment of the PCV to the PS of the blade causes rapid decrease in the pressure difference across this blade, i.e., a rapid decrease in blade loading near the tip. Similar large perpendicular vortical structures have been observed in the heavily loaded cavitating rocket inducers (Acosta, 1958, "An Experimental Study of Cavitating Inducers," Proceedings of the Second Symposium on Naval Hydrodynamics, ONR/ACR-38, pp. 537-557 and Tsujimoto, 2007, "Tip Leakage and Backflow Vortex Cavitation," Fluid Dynamics of Cavitation and Cavitating Turbopumps, L. d'Agostino and M. Salvetti, eds., Springer, Vienna, Austria, pp. 231-251), where they extend far upstream of the rotor and cause global flow instabilities.
机译:空化故障涉及的流动现象和机理,即由空化导致的泵性能严重下降,一直是一个难题。在本文中,使用高速成像结果以及压力和性能测量结果来阐明轴向水喷射泵中与气蚀故障有关的特定机制。实验是使用几何形状相同的铝质和透明丙烯酸转子进行的,后者可无阻碍地目视观察叶片通道内的气蚀现象。观察结果表明,在转子叶片尖端附近覆盖叶片叶片吸力侧(SS)的尖端泄漏涡(TLV)与附着气穴的后缘之间的相互作用在导致故障的过程中起着关键作用。特别地,在薄板腔的靠近叶片尖端的后缘处形成的涡旋空化作用被TLV夹带并沿几乎垂直于叶片SS表面的方向重新定向,然后通过叶片通道向下游对流。 。这些“垂直空化涡流”或PCV远高于击穿空化指数,发生在叶片不重叠的区域,它们仅影响局部流动的复杂性,而对整体泵的性能影响最小。随着压力的减小和叶片表面的气蚀现象的增加,这种相互作用在两个相邻的转子叶片重叠的区域中发生,并且PCV从起始叶片的SS表面延伸到相邻叶片的压力侧(PS)。当PCV在叶片之间延伸时,气穴击穿开始,有效地阻塞了转子通道的尖端区域。随着压力的进一步降低,PCV的尺寸和强度会增加,并延伸到通道的更深处,从而导致性能快速下降。因此,壳体压力测量结果证实了将PCV附接到叶片的PS上会导致该叶片两端的压差迅速减小,即尖端附近的叶片载荷迅速减小。在重载的空化火箭诱导器中也观察到了类似的大型垂直涡结构(Acosta,1958年,“空化诱导器的实验研究”,第二届海军水动力研讨会论文集,ONR / ACR-38,第537-557页和Tsujimoto,2007年,“尖端泄漏和回流涡流空化”,《空化和空化涡轮泵的流体动力学》,L。d'Agostino和M. Salvetti编辑,Springer,维也纳,奥地利,第231-251页)。远在转子上游,并导致整体流动不稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号