首页> 外文会议>International conference on the science and technology of display phosphors >HIGHLY EFFICIENT AND THERMALLY STABLE ORGANIC LIGHT-EMITTING DIODES
【24h】

HIGHLY EFFICIENT AND THERMALLY STABLE ORGANIC LIGHT-EMITTING DIODES

机译:高效和热稳定的有机发光二极管

获取原文

摘要

Thermal stability and long lifetime of molecular organic light-emitting diodes (MOLEDs) are key issues for their use in flat panel displays. Such an application requires them to maintain device characteristics, e.g. Quantum efficiency and emission spectrum at different operating temperatures. Degradation of MOLEDs upon heating might be attributed to the morphological instability of the hole transport layer. For instance, the widely used hole transport material, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD), has a relatively low glass transition temperature (Tg) near 63°C and is easy to recrystallize at room temperature. Hence, hole transport materials with high Tg offer an effective approach for improving the thermal stability of MOLEDs. On the other hand, the electroluminescence (EL) quantum efficiency of a device using an undoped tris-(8-hydroxyquinolinato) aluminum (Alq_3) as the emitting layer decreases rapidly with increasing temperature. The decrease of EL efficiency can be partially attributed to the decrease of the photoluminescence (PL) quantum yield of Alqs with increasing temperature. In this study, we demonstrate thermally stable and efficient MOLEDs based on the combination of double hole transport layers with a high Tg, and an emitting layer doped with a fluorescent dye. Using hole transport materials with Tg above 100°C, the devices show considerably stable emission up to 110°C without failure. When Alq_3 is doped with a quinacridone derivative and is used as the emitting layer, the EL efficiency at room temperature is enhanced and is sustained up to 110°C. Improvements of EL efficiency and its temperature dependence are discussed. Results on device lifetime measurements are also presented.
机译:分子有机发光二极管(MOLEDS)的热稳定性和长寿命是它们在平板显示器中使用的关键问题。这种应用要求它们保持设备特征,例如,不同工作温度的量子效率和发射光谱。加热时莫尔德的降解可能归因于空穴传输层的形态不稳定性。例如,广泛使用的空穴传输材料N,N'-二苯基-N,N'-BIS(3-甲基苯基)-1,1'-联苯-4,4'-二胺(TPD)具有相对较低的玻璃化转变温度(Tg)接近63°C,易于在室温下重结晶。因此,具有高TG的空穴传输材料提供了改善莫尔的热稳定性的有效方法。另一方面,随着温度的升高,使用未掺杂的三 - (8-羟基喹啉)铝(ALQ_3)的装置的电致发光(EL)量子效率随着发光层的速度迅速降低。 EL效率的降低可以部分地归因于随着温度的增加,ALQ的光致发光(PL)量子产率降低。在该研究中,我们证明了基于具有高Tg的双孔运输层的组合和掺杂有荧光染料的发光层的热稳态和有效的莫罗德。使用带有TG以上的空穴传输材料,该器件显示出明显稳定的发射,最高可达110°C而无故障。当Alq_3掺杂有喹吖啶酮衍生物并且用作发光层时,室温下的EL效率得到增强,并且持续到110℃。讨论了EL效率的改进及其温度依赖性。还提出了设备寿命测量的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号