首页> 外文会议>Conference on optical system contamination >Modeling of volatile contamination transport for surface operations of the Mars Science Laboratory
【24h】

Modeling of volatile contamination transport for surface operations of the Mars Science Laboratory

机译:火星科学实验室表面运作挥发污染运输建模

获取原文
获取外文期刊封面目录资料

摘要

Gas-phase contamination modeling for space systems typically looks at the free molecular flow regime, Knudsen number 1, wherein transport is characterized by collisionless motion of contaminant molecules and deposition proportional to grey- or black-body view factors. Such an approach, however, was not applicable to the contamination transport environment [to be] encountered by the NASA Mars Science Laboratory (MSL) during surface operations on the Red Planet. For MSL, we required an understanding of contaminant transport under the Mars-ambient conditions of an approximately 8 Torr CO_2 atmosphere in order to provide traceability between hardware outgassing limits and the allowable vapor-phase contaminant concentrations in the vicinity of atmospheric sampling sensors and deposition to prospective solid sample sites on the Martian surface. In setting outgassing requirements for the MSL surface system, an engineering upper-bound estimate-rather than a precise result based on an all-inclusive simulation of the dynamic flow field-of the local contamination density was needed. Here we describe a 3-D, low-speed computational fluid dynamics approach, including molecular diffusion, to determine mixing ratios of contaminants at the atmospheric sample inlets and solid sample inlet deposition rates. Turbulence enhances the effective diffusion, leading to the dilution of the volatile contaminants, which reduces contamination concentration at a distance far from the source in comparison to inviscid or laminar flow fields: Therefore, the approach employed here results in a conservative upper bound compared to one in which turbulence is explicitly addressed. Because contaminant transport in this environment (Peclet number in the range of 50-1000) is advection dominated, spatial contamination concentration is a strongly-peaked function of the wind direction. Results of sample calculations for expected Mar wind speeds (u_∞= 1-20 m/s) and several wind directions are presented.
机译:空间系统气相污染建模通常着眼于分子自由流动状态,克努森数 1,其中传输的特征是污染物分子的碰撞运动和沉积成比例grey-或黑体视图因素。这样的方法,然而,并不适用于[待]由NASA火星科学实验室(MSL)期间对红色行星表面操作中遇到的污染传输环境。为MSL,我们所需要的大约8托CO_2气氛的火星在环境条件下的污染物输送的理解,以便提供在大气采样的传感器和沉积的附近硬件脱气限制和允许的气相污染物浓度之间的可追踪性在火星表面前瞻性固体样品的网站。在用于MSL表面系统中设置除气要求,工程上界估计-而不是精确的结果基于所述动态流量所需要的局部污染密度场的的全包模拟。在这里,我们描述了3-d,低速计算流体动力学方法,包括分子扩散,以确定在大气样品入口和固体样品入口的沉积速率混合污染物的比率。湍流增强了有效的扩散,导致挥发性污染物的稀释,这在距离减少污染浓度远离源相比于无粘性或层流字段:因此,该方法在这里所采用的结果在一个保守的与一个上限其中湍流明确处理。因为在这样的环境(在50-1000的范围内Peclet数)污染物传输是平流为主,空间污染浓度是风向的一个强峰功能。对于预期三月风速样品计算(u_∞= 1-20米/秒)和几个风向结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号