首页> 外文会议>IEEE/NPSS Symposium on Fusion Engineering >Health physics and radioactive waste considerations for the TFTR
【24h】

Health physics and radioactive waste considerations for the TFTR

机译:TFTR的健康物理和放射性废物考虑因素

获取原文

摘要

The Tokamak Fusion Test Reactor (TFTR) began high power fusion operations, with tritium, in November of 1993. These operations utilize a 50/50 mixture of deuterium and tritium which yields 14 MeV neutrons at a magnitude of 2.0E+18 per 3 second pulse. These high energy neutrons interact with the vacuum vessel, neutral beams, confinement coils and other structural and peripheral materials resulting in fusion activation products. These operations also consist of the delivery, storage, injection and subsequent processing of tritium gas in support of the D-T fusion program. These systems have manipulated and processed 208 PBq of tritium throughout the past year. The operational health physics program involves maintenance on activated materials and tritium contaminated systems. Survey data and findings are collected on routine and special maintenance situations ranging from work on small volume piping to large volume neutral beam systems. The results of radiological measurements are described in relation to the differentiation of elemental tritium to tritium oxide in worker's breathing zones and the associated general work area. The contamination levels, airborne radioactivity, and oil concentrations are also compared. Measurements for gamma radiation are performed to determine personnel access requirements and for comparison to activation and decay models as a planning tools. TFTR presents many unusual challenges with regard to dismantling, packaging and disposal of its components and ancillary systems. A functional time phased radioactive waste generation schedule was developed to enhance project planning. This project will be the first demonstration of the decommissioning of a tritium fuelled fusion test reactor.
机译:托卡马克聚变试验堆(TFTR)开始高功率熔化操作,用氚,在1993年11月,这些操作利用氘和氚其产生14兆点电子伏的中子以2.0E + 18的大小每3秒的50/50混合物脉冲。这些高能中子与所述真空容器,中性束,限制线圈和导致融合活化产物的其它结构和外围材料相互作用。这些操作还包括输送,存储,注射和氚气的后续处理以支持d-T聚变的程序的。这些系统操作和在过去一年处理氚的208个PBQ。运算健康物理方案涉及在活化的材料和氚污染系统的维护。调查数据和结果都在常规和特殊的维护的情况下,从上小体积配管工作于大体积的中性束系统收集的。辐射测量结果有关的描述,以氚元素在工人的呼吸区域分化为氚和相关的普通工作区。污染程度,空中放射性,和油的浓度也进行了比较。伽玛射线测量以确定人员的访问要求和比较激活和衰变模型作为规划工具。 TFTR提出关于拆卸,包装和处置及其部件和辅助系统的许多不寻常的挑战。功能性的时间分阶段放射性废物发电计划的开发,以提高项目规划。该项目将是一个氚聚变燃料试验反应堆退役的第一个示范。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号