首页> 外文会议>Conference on Stereoscopic Displays and Virtual Reality Systems >Anisotropic scene geometry resampling with occlusion filling for 3DTV applications
【24h】

Anisotropic scene geometry resampling with occlusion filling for 3DTV applications

机译:具有3DTV应用的遮挡填充的各向异性场景几何重大采样

获取原文

摘要

Image and video-based rendering technologies are receiving growing attention due to their photo-realistic rendering capability in free-viewpoint. However, two major limitations are ghosting and blurring due to their sampling-based mechanism. The scene geometry which supports to select accurate sampling positions is proposed using global method (i.e. approximate depth plane) and local method (i.e. disparity estimation). This paper focuses on the local method since it can yield more accurate rendering quality without large number of cameras. The local scene geometry has two difficulties which are the geometrical density and the uncovered area including hidden information. They are the serious drawback to reconstruct an arbitrary viewpoint without aliasing artifacts. To solve the problems, we propose anisotropic diffusive resampling method based on tensor theory. Isotropic low-pass filtering accomplishes anti-aliasing in scene geometry and anisotropic diffusion prevents filtering from blurring the visual structures. Apertures in coarse samples are estimated following diffusion on the pre-filtered space, the nonlinear weighting of gradient directions suppresses the amount of diffusion. Aliasing artifacts from low density are efficiently removed by isotropic filtering and the edge blurring can be solved by the anisotropic method at one process. Due to difference size of sampling gap, the resampling condition is defined considering causality between filter-scale and edge. Using partial differential equation (PDE) employing Gaussian scale-space, we iteratively achieve the coarse-to-fine resampling. In a large scale, apertures and uncovered holes can be overcoming because only strong and meaningful boundaries are selected on the resolution. The coarse-level resampling with a large scale is iteratively refined to get detail scene structure. Simulation results show the marked improvements of rendering quality.
机译:基于图像和视频的渲染技术正在接受由于其在繁忙视点中的照片 - 现实渲染能力而受到关注。然而,由于基于采样的机制,两个主要限制是重影和模糊。使用全局方法(即近似深度平面)和本地方法(即差异估计)提出支持选择精确采样位置的场景几何。本文侧重于本地方法,因为它可以在没有大量相机的情况下产生更准确的渲染质量。本地场景几何形状有两个困难,这些难点是几何密度和包括隐藏信息的未覆盖区域。它们是在没有混叠文物的情况下重建任意观点的严重缺点。为了解决问题,我们提出了基于张量理论的各向异性扩散重采样方法。各向同性低通滤波完成现场几何形状中的抗锯齿,并且各向异性扩散可防止过滤模糊的视觉结构。在预过滤空间上扩散后估计粗糙样品中的孔,梯度方向的非线性加权抑制了扩散量。通过各向同性过滤有效地除去低密度的含有来自低密度的伪像,并且可以在一个过程中通过各向异性方法解决边缘模糊。由于采样间隙的差异大小,考虑到滤光级和边缘之间的因果关系定义重采样条件。使用采用高斯尺度空间的部分微分方程(PDE),我们迭代地实现粗内重采样。在大规模的规模中,孔径和未覆盖的孔可以克服,因为在分辨率上仅选择了强大和有意义的边界。具有大规模的粗级重采样迭代地精制以获得详细的场景结构。仿真结果显示了渲染质量的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号