【24h】

Wafer alignment based on existing microstructures

机译:基于现有微结构的晶片对齐

获取原文

摘要

Conventionally, highly structured patterns or targets are placed on wafers to facilitate alignment and highly repeatable positioning of the wafer. The authors describe a micro-positioning scheme in which such patterns are replaced either by the device pattern on the front of the wafer, or the ground surface on the rear of the wafer. When illuminated by a visible or near-IR beam of light, both the patterned and the unfinished (i.e., diffusely ground silicon) sides of a wafer scatter prodigious amounts of light. By collecting portions of this light through two apertures and then measuring the phase of their mutual interference, the position of the surface wafer can be repeatedly and unambiguously established with a precision of 1 micro-inch (25 nm) over a range on the order of d $EQ $lambda@/A, where $lambda is the wavelength of the light and A is the angle subtended by the apertures at the wafer. Typical values for $lambda and A are 0.8 micron and 0.1 radian, respectively, in which case d $APEQ 8 microns. This means that if a standard stage can be used to position the wafer to within $POM 4 microns, then the interferometric sensor described here can be used to refine its position to within 25 nm. The ultimate resolution, $Delta@x$-min$/, with which this position can be reestablished is equal to $lambda@/(A$PRM@SNR) where SNR is the signal-to- noise ratio of the interference signal. For example, with d $EQ 8 $mu@m and a signal-to-noise ratio of 400, $Delta@x$-min$/ $APEQ 25 nm, or just under a micro-inch. The direction of the sensitivity vector direction is defined by the relative orientation of the two apertures, and by the associated optics. By using two measurement locations, angular orientation of the wafer about an axis normal to its surface can also be monitored. Because the measurement is inherently based on interferometric phase, rather than the amplitude, it is highly tolerant to variations in surface reflectivity and/or illumination level. The authors describe the theoretical basis for this measurement technique and present results demonstrating repositioning to better than 50 nm using both the patterned face of a wafer and its diffusely reflecting back side.
机译:以往,高度结构化的图案或目标被放置在晶片上,以便在晶片的对准和高度可重复的定位。作者描述,其中这样的图案是由在晶片的前部,或在后的晶片的地面的设备图案或者代替一个微定位方案。当通过光的可见或近红外光束的未完成(即,漫地硅)晶片散射惊人数量的光的侧面照射,无论是图案化和。通过两个孔收集这些光的部分,然后测量它们的相互干扰的相位,在表面片的位置可以具有1微英寸(25纳米)的范围内的量级的精度反复和明确地建立d $ $ EQ拉姆达@ / A,其中$拉姆达是光的波长,A是通过在晶片中的孔对向的角度。为$拉姆达和典型值分别为0.8微米和0.1弧度,在此情况下D $ APEQ 8微米。这意味着,如果一个标准的阶段可以被用来将晶片定位到$ POM 4微米之内,则干涉传感器此处描述可以用于25nm的范围内改进其位置。最终的分辨率,$德尔塔@ X $ $ -min /,与此位置可被重新建立等于$拉姆达@ /(A $ PRM @ SNR)其中SNR是干扰信号的信号噪声比。例如,对于d $ EQ 8 $亩@ m和一个信噪比的400,$德尔塔@ X $ -min / $ APEQ 25纳米,或者只是下一个微英寸。灵敏度矢量方向的方向是由两个孔的相对取向限定,并且由相关联的光学器件。通过使用两个测量位置,绕垂直于它的表面的轴的晶片的角度取向,也可以监测。因为测量固有地基于干涉相位,而不是幅度,它是高度耐受的表面反射和/或照明水平的变化。作者描述了这种测量技术和本发明的结果使用晶片的两个图案化的表面和它的漫反射背面证明重新定位,以便更好地大于50nm的理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号