首页> 外文会议>World Hydrogen Energy Conference >Development of tubular proton conducting electr olysers
【24h】

Development of tubular proton conducting electr olysers

机译:管状质子导电电雾器的开发

获取原文

摘要

High temperature electrolysis (HTE) of steam offers high efficiency of conversion of renewable and peak electricity to H2 and may increase efficiency further by utilising available sources of heat and steam from solar, geothermal, or nuclear power plants. They operate therefore ideally best at temperatures above those of the supplied steam (e.g.. 200-600 °C). Technologies developed to date comprise solid oxide electrolyser cells (SOECs) utilising oxide ion conducting electrolytes operating by virtue of necessity around 800 °C. They produce hydrogen on the steam feed side, and separation and drying of H2 cost energy and add plant complexity and footprint. In comparison, a high temperature proton conducting electrolyte will instead pump protons (H~+) and form dry H2, leaving O2 on the steam side. Such proton ceramic electrolyser cells (PCECs) thus require less separation process stages and can produce pressurised dry H2 direcdy. Protons exhibit lower activation energies than oxide ions, and ceramic proton conductors will be able to operate at lower temperatures - 600-800 °C - i.e., closer to the ideal range for integration with solar and geothermal plants. The main objective of the European project "ELECTRA FCH-JTI 621244" (2014-2017) is to develop and demonstrate scalable fabrication of tubular HTE cells with proton conducting electrolytes. The robust tubular cells will be assembled in a flexible 1 kW multi-tube module to produce pure dry pressurised H2 more efficiendy than competing technologies. The cells will reliably operate at temperatures up to 600 °C in steam electrolysis mode to promote efficient integration of PCEC technology in geothermal and solar heat power plants. We briefly report below main results achieved so far in terms of materials development, assembly and evaluation of performance. Results on process operability requirements for this system are reported in another contribution.
机译:蒸汽的高温电解(HTE)为H2提供了高可再生和峰值电力的高效率,并通过利用来自太阳能,地热或核电厂的可用的热量和蒸汽来进一步提高效率。因此,它们在高于供应蒸汽(例如200-600°C)的温度下最佳地运行。开发到迄今为止的技术包括利用氧化离子电解质通过需要约800℃的氧化离子电解质进行固体氧化物电解槽(SOEC)。它们对蒸汽饲料侧产生氢,并分离和干燥H2成本能量,并添加植物复杂性和占地面积。相比之下,高温质子电解质将替代泵出质子(H〜+)并形成干燥的H 2,在蒸汽侧离开O2。因此,这种质子陶瓷电解槽(PCEC)因此需要较少的分离过程阶段,并且可以产生加压干燥H2 DiRecdy。质子表现出低于氧化物离子的活化能量,陶瓷质子导体能够在较低温度下操作 - 600-800°C - 即,与太阳能和地热植物集成的理想范围。欧洲项目“Electra Fch-JTI 621244”(2014-2017)的主要目标是开发和证明具有质子传导电解质的管状HTE细胞的可扩展制造。稳健的管状电池将在柔性1 kW多管模块中组装,以产生纯干压力的H2,而不是竞争技术。细胞在蒸汽电解模式下可靠地在高达600°C的温度下可靠地操作,以促进PCEC技术在地热和太阳能发电厂的高效集成。我们简要介绍了到目前为止迄今为止实现的主要成果,绩效的材料发展,大会和评估。结果在另一个贡献中报告了该系统的过程可操作性要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号