首页> 外文会议>Power Conference >SYSTEM ANALYSIS OF A 100KW INTERNAL COMBUSTION ENGINE (ICE) SOLID OXIDE FUEL CELL (SOFC) HYBRID CONFIGURATION
【24h】

SYSTEM ANALYSIS OF A 100KW INTERNAL COMBUSTION ENGINE (ICE) SOLID OXIDE FUEL CELL (SOFC) HYBRID CONFIGURATION

机译:100KW内燃机(冰)固体氧化物燃料电池(SOFC)混合配置的系统分析

获取原文

摘要

Due to the intermittent nature of the renewable power plants and the rigid operation of existing plans, the need for flexible power production is eminent. Hybrid energy systems have shown potential for flexible power production capable to fulfill the power demands and maintain the efficiency. This work studies different design cases of a 100kW Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. Anode off-gas from the fuel cell stack provided the chemical energy to run the ICE. Heat management of the anode exhaust was considered to attain the operational limits of the ICE in the present configuration. A turbocharger was used to deliver the necessary air flow for both the fuel cell stack and the engine. A series of 25 design cases were chosen to analyze the performance and the potential flexibility of this cycle. The 25-design points resulted from a matrix composed of the variation of fuel utilization and reformer operating temperature, ranging from 70% to 90% and 600K to 1000K. respectively. At each design point, hardware was re-sized to match the desired conditions. The cycle performance and fuel cell distributed profiles are discussed in this paper. It is discovered that the system efficiency increases as the fuel utilization increases following a nearly linear behavior. The highest efficiency attained is 62% at a reformer operating temperature of 800K and a 90% fuel utilization. The minimum external fuel required to maintain turbocharger in operation decreases with the increase on the reformer temperature. Power contribution between ICE and SOFC follows a linear behavior closely overlapping each trend at different reforming operational temperatures. The impact of external reforming and internal on-anode reforming is also discussed. It is found that there is an optimal balance between the external and internal reforming. The optimal methane content in this work is shown to be around ~18 vol%.
机译:由于可再生电厂的间歇性和现有计划的刚性运行,对灵活的电力生产的需求是卓越的。混合能源系统已经示出了灵活的电力生产能力,能够满足电力需求并保持效率。这项工作研究了100kW内燃机(冰)和固体氧化物燃料电池(SOFC)混合系统的不同设计案例。来自燃料电池堆的阳极废气提供了化学能量来运行冰。考虑阳极排气的热管理以获得本配置的冰的操作限制。使用涡轮增压器来为燃料电池堆和发动机提供必要的气流。选择了一系列25个设计案例来分析该循环的性能和潜在的灵活性。由矩阵产生的25个设计点由燃料利用和重整器工作温度的变化组成,范围为70%至90%和600K至1000K。分别。在每个设计点,硬件重新尺寸以匹配所需的条件。本文讨论了循环性能和燃料电池分布式轮廓。发现系统效率随着燃料利用率随着几乎线性的行为而增加而增加。 REDERER的最高效率在800K的改革器工作温度下为62%,燃料利用率为90%。维持涡轮增压器在运行中所需的最小外部燃料随着重整器温度的增加而降低。 ICE和SOFC之间的功率贡献遵循不同重整操作温度的每种趋势紧密重叠的线性行为。还讨论了外部重整和内部阳极重整的影响。发现外部和内部重整之间存在最佳平衡。该工作中最佳甲烷含量显示为约〜18体积%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号