首页> 外文会议>Society of Petrophysicists and Well Log Analysts, Inc.;SPWLA Annual Logging Symposium >DUAL NEURAL NETWORK ARCHITECTURE FOR DETERMINING PERMEABILITY AND ASSOCIATED UNCERTAINTY
【24h】

DUAL NEURAL NETWORK ARCHITECTURE FOR DETERMINING PERMEABILITY AND ASSOCIATED UNCERTAINTY

机译:用于确定渗透性和相关不确定性的双神经网络架构

获取原文
获取外文期刊封面目录资料

摘要

The computation of permeability is vital for reservoir characterization because it is a key parameter in the reservoir models used for estimating and optimizing hydrocarbon production. Permeability is routinely predicted as a correlation from near-wellbore formation properties measured through wireline logs. Several such correlations, namely SDR permeability and Timur-Coates permeability models using nuclear magnetic resonance (NMR) measurements, K-lambda using mineralogy, and other variants, have often been used, with moderate success. In addition to permeability, the determination of the uncertainties, both epistemic (model) and aleatoric (data) are important for interpreting variations in the predictions of the reservoir models. In this paper we demonstrate a novel dual deep neural network framework encompassing a Bayesian neural network (BNN) and an artificial neural network (ANN) for determining accurate permeability values along with associated uncertainties.Deep learning techniques have been shown to be effective for regression problems, but quantifying the uncertainty of their predictions and separating them into the epistemic and aleatoric fractions is still considered challenging. This is especially vital for petrophysical answer products because these algorithms need the ability to flag data from new geological formations that the model was not trained on as “out of distribution†and assign them higher uncertainty. Additionally, the model outputs need sensitivity to heteroscedastic aleatoric noise in the feature space arising due to tool and geological origins. Reducing these uncertainties is key to designing intelligent logging tools and applications, such as automated log interpretation.In this paper we train a BNN with NMR and mineralogy data to determine permeability with associated epistemic uncertainty, obtained by determining the posterior weight distributions of the network by using variational inference. This provides us the ability to differentiate in- and out-of-distribution predictions, thereby identifying the suitability of the trained models for application in new geological formations. The errors in the prediction of the BNN are fed into a second ANN trained to correlate the predicted uncertainty to the error of the first BNN. Both networks are trained simultaneously and therefore optimized together to estimate permeability and associated uncertainty.The model is trained on a “ground-truth†core database representing samples from different geology formations. The application of the machine learning permeability model demonstrates a greater than 50% reduction of the mean square error in comparison to traditional SDR and Timur-Coates permeability models (KSDR and KTIM, respectively) on wells from the Ivar Aasen Field. We also demonstrate how the machine learning workflow enables us to understand the value of information (VOI) of different logging measurements, by replacing the logs with their median values from nearby wells during model inference, and studying the increase of the mean square error in the permeability predictions.
机译:磁导率的计算是对储层表征至关重要的,因为它是在用于估计和优化烃生产的油藏模型的关键参数。渗透性是经常预测为从通过电缆测井测量近井地层特性的相关性。几个这样的相关性,即SDR渗透性和使用核磁共振(NMR)测量帖木儿-科茨渗透率模型,使用矿物学,和其它变型K-拉姆达,经常被使用的,以相当成功。除了渗透性,确定的不确定性的,这两个认知(模型)和肆意(数据)是用于在储模型的预测解释的变化重要。在本文中,我们证明了一种新的双深层神经网络框架包围贝叶斯神经网络(BNN)和用于确定与相关联的不确定性沿准确的渗透率值的人工神经网络(ANN)。深学习技术已被证明是有效的回归问题,但他们的量化预测的不确定性和分离到的认知和肆意的部分仍然被认为是具有挑战性的。因为这些算法需要从新的地质构造,该模型是没有经过培训就为€distributionâ的œout€并为它们分配较高的不确定性的能力,标志数据。这是岩石物理答案产品尤为重要。此外,该模型输出需要在由于工具和地质起源引起的特征空间,以异方差肆意噪声灵敏度。减少这些不确定性的关键是设计智能测井工具和应用程序,如自动测井解释。在本文中,我们培养了BNN用NMR和矿物学的数据以确定相关联的主观因素,通过利用变分推理确定所述网络的后部的重量分布而获得渗透性。这为我们提供了区分入点和出的分布预测,从而确定培训的模式在新的地质构造用途的适用性的能力。在BNN的预测误差送入第二ANN受过训练,以预测的不确定性的第一BNN的错误相关。这两个网络同时培训并因此优化一起估算渗透率和相关联的不确定性。该模型是一个“ground-truthâ€核心代表从不同的地质地层样本数据库上训练。机器学习渗透率模型的应用程序演示大于相比从伊瓦尔奥森字段井传统SDR和铁木尔-科茨渗透率模型(和KSDR KTIM,分别地)的均方误差的减少50%。我们还展示了机器学习工作流程如何使我们能够理解的信息(VOI)的不同记录的测量值,通过模型推理过程中从附近的水井他们的中位值替换日志和学习均方误差在增加透气性预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号