首页> 外文会议>IEEE Sensors Conference >Integration of plasmonic antenna on quantum cascade laser facets for chip-scale molecular sensing
【24h】

Integration of plasmonic antenna on quantum cascade laser facets for chip-scale molecular sensing

机译:芯片级联激光面对芯片级分子传感的量子级联激光刻面的集成

获取原文

摘要

Many important bio-molecules, such as proteins and pharmaceuticals, have their natural resonances in the mid-infrared (2 – 30µm) region of the optical spectrum. The primary challenge of sensing these molecules is to increase the interaction between them and light with such long wavelengths. This can be overcome by exploiting optical nano-antennas which can squeeze the optical mode into a volume much smaller than the operating wavelength. We present a novel antenna design based on hybrid materials composed of a coupled Au-SiO2-Au nanorod integrated on the facet of a quantum cascade laser (QCL) operating in the mid-infrared region of the optical spectrum. FDTD simulations showed that for sandwiched dielectric thicknesses within the range of 20 to 30 nm, peak optical intensity at the top of the antenna ends is 4000 times greater than the incident field intensity. The device was fabricated using focused ion beam milling. Apertureless mid-infrared near field optical microscopy (NSOM) showed that the device can generate a spatially confined spot within a nanometric size about 12 times smaller than the operating wavelength. Such high intensity, hot spot locations can be exploited to enhance the photon interaction for bio-molecules for sensing applications.
机译:许多重要的生物分子,例如蛋白质和药物,在光谱的中红外(2 - 30μm)区域中具有它们的自然共振。感测这些分子的主要挑战是增加它们之间的相互作用和具有这种长波长的光。这可以通过利用光学纳米天线来克服,这可以将光学模式挤压成小于工作波长的体积。基于混合材料的耦合AU-SIO 2 -AU纳米OD在光学的中红外区域的量子级联激光(QCL)的刻面上组成的混合材料。光谱。 FDTD模拟显示,对于在20至30nm的范围内的夹层电介质厚度,天线顶部顶部的峰值光学强度比入射场强度大4000倍。使用聚焦离子束铣削制造该装置。不可接近的中红外线近场光学显微镜(NSOM)表明,该装置可以在纳米尺寸内产生的空间限制点约为比操作波长小的约12倍。可以利用这种高强度,热点位置来增强用于传感应用的生物分子的光子相互作用。

著录项

  • 来源
  • 会议地点
  • 作者

    (missing);

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 TP212-53;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号