首页> 外文会议>Conference on Infrared Sensors, Devices, and Applications >Mid-IR Photodetection by Interlayer Exciton in 2D Heterostructure
【24h】

Mid-IR Photodetection by Interlayer Exciton in 2D Heterostructure

机译:2D异质结构中层间激子的中红外反探测

获取原文

摘要

Infrared (IR) technology has been widely used in biomedical imaging, non-destructive inspection, environmental monitoring and optical communication. The important mid-far-IR photodetectors are mainly limited to compound semiconductors that normally requires intricate crystal growth process and operation at cryogenic cooling, which results in bulky and expensive system. The emergence of two-dimensional (2D) transition metal dicharcogenides (TMDCs) semiconductors offers new opportunities for optoelectronic applications for their strong quantum confinement and the easiness in forming heterostructures enabled by the out-of-plane van der Waals bonding. The interlayer excitons formed in a TMDC heterostructure possess the inherent large exciton binding from their parent materials and the flexibility in exciton energy tuning. This offers opportunity to realize excitonic devices operable at room temperature at mid- to far-IR range, which are challenging for intraband exciton based 2D devices. This paper will introduce photodetection in mid-IR range by manipulating interlayer excitons generated between two specifically selected TMDCs with appropriate band alignment. The unique band structure in the heterostructure allows the absorption band to be tuned and extended to 20μm under a modest electric field, far beyond the cutoff wavelength of 2D black phosphorous or 2D black arsenic phosphorous. The ab initio simulation suggests the sizeable charge delocalization and accumulation at interface result in greatly enhanced oscillator strength of interlayer excitons and high responsivity of the photodetector. The results provide a promising platform for realizing robust tunable room temperature operating IR photodetectors.
机译:红外(IR)技术已广泛应用于生物医学成像,无损检测,环境监测和光学通信。重要的中远红外光电探测器主要限于复合半导体,这些半导体通常需要复杂的晶体生长过程和在低温冷却过程中的操作,这导致庞大且昂贵的系统。二维(2D)过渡金属二均匀(TMDC)半导体的出现为其强量子限制提供了新的电气应用的新机会,以及通过平面外van der WALS键合的形成异质结构的容易性。在TMDC异质结构中形成的层间激子具有从其母体材料的固有的大激子结合和激子能量调谐中的灵活性。这提供了实现在室温下可操作的兴奋器件的机会,这是基于IntrAnand Exciton的2D设备挑战。本文将通过在具有适当带对准的两个专门选择的TMDC之间操纵中间激子的中间激子来引入中间IR范围的光检测。异质结构中的独特频带结构允许在适度的电场下进行吸收带和延伸到20μm,远远超出2D黑色磷或2D黑色砷磷的截止波长。 AB Initio仿真提出了相当大的电荷临床化和接口累积导致层间激子的振荡器强度大大提高,光电探测器的高响应度。结果为实现强大的可调谐室温操作IR光电探测器提供了一个有希望的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号