首页> 外文会议>IEEE International Conference on Dielectrics >Role of thermal properties of cathode materials for the nanoscale breakdown in vacuum
【24h】

Role of thermal properties of cathode materials for the nanoscale breakdown in vacuum

机译:阴极材料热特性在真空中纳米级分解的作用

获取原文

摘要

Nowadays, electrical insulation issue has attracted increasing concerns as the physical dimension of electrical devices and equipment shrinks to micrometer and even nanometer. Since almost all the nanostructures and nanodevices are driven by electrical bias, it is very vital to make sure a good robustness while operating under the high electric field. Hence, to understand the breakdown behaviors across a vacuum nanogap is of great interest for the insulation reliability evaluation of naonstructures and nanodevices. In the present work, cathode materials with various thermal properties were employed and the breakdown measurement was carried out across a 100-nm vacuum gap by utilizing the in-situ nanoscale discharge measurement system based on the scanning electron microscope and piezoelectric nano-manipulator. Results show that the ${I-V}$ curves for both Mo and W cathodes demonstrate the similar trend, which can be generally regarded to be three stages: leakage dark current stage (several pA), electron emission stage $( sim 2.0 nA)$ and breakdown development stage (several mA). Moreover, W cathode with a higher melting point shows a larger average breakdown threshold $( sim 241.2mathrm {V})$ than Mo cathode $( sim 199.4mathrm {V})$, which indicates the metal atomic vapor evaporated from the cathode plays a key role on the electron avalanche and breakdown. As a consequence, the hypothesis for cathode process is put forward, regarding that the field emission dominates the initial stage and then thermionic emission takes over until the gap is filled with massive ions and electrons and the breakdown occurs. This would be of great benefit for better understanding of vacuum breakdown behavior at nanoscale.
机译:如今,由于电气设备的物理维度和设备缩小到千分座甚至纳米,电气绝缘问题引起了越来越多的问题。由于几乎所有的纳米结构和纳米级都被电偏差驱动,因此在高电场下操作时确保良好的鲁棒性非常重要。因此,为了了解真空纳米盖的击穿行为对于Naon结构和纳米型的绝缘可靠性评估非常令人兴趣。在本作工作中,采用具有各种热性质的阴极材料,通过利用基于扫描电子显微镜和压电纳米操纵器的原位纳米级放电测量系统,在100nm真空间隙上进行击穿测量。结果表明,MO和W阴极的$ {IV} $曲线展示了类似的趋势,这通常被认为是三个阶段:泄漏暗电流阶段(几个PA),电子发射阶段$( SIM 2.0 NA) $和细分发展阶段(几MA)。此外,具有较高熔点的W阴极显示出更大的平均分解阈值$( SIM 241.2 Mathrm {V})$( SIM 199.4 Mathrm {v})$,这表明金属原子蒸汽蒸发来自阴极在电子雪崩和击穿中起着关键作用。结果,提出了阴极过程的假设,关于场排放主导初始阶段,然后占用热离子发射直到间隙填充有大量离子和电子,发生故障。为了更好地了解纳米级的真空击穿行为,这将是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号