首页> 外文会议>2018 IEEE 2nd International Conference on Dielectrics >Role of thermal properties of cathode materials for the nanoscale breakdown in vacuum
【24h】

Role of thermal properties of cathode materials for the nanoscale breakdown in vacuum

机译:阴极材料的热性质对真空中纳米级击穿的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nowadays, electrical insulation issue has attracted increasing concerns as the physical dimension of electrical devices and equipment shrinks to micrometer and even nanometer. Since almost all the nanostructures and nanodevices are driven by electrical bias, it is very vital to make sure a good robustness while operating under the high electric field. Hence, to understand the breakdown behaviors across a vacuum nanogap is of great interest for the insulation reliability evaluation of naonstructures and nanodevices. In the present work, cathode materials with various thermal properties were employed and the breakdown measurement was carried out across a 100-nm vacuum gap by utilizing the in-situ nanoscale discharge measurement system based on the scanning electron microscope and piezoelectric nano-manipulator. Results show that the ${I-V}$ curves for both Mo and W cathodes demonstrate the similar trend, which can be generally regarded to be three stages: leakage dark current stage (several pA), electron emission stage $( sim 2.0 nA)$ and breakdown development stage (several mA). Moreover, W cathode with a higher melting point shows a larger average breakdown threshold $( sim 241.2mathrm {V})$ than Mo cathode $( sim 199.4mathrm {V})$, which indicates the metal atomic vapor evaporated from the cathode plays a key role on the electron avalanche and breakdown. As a consequence, the hypothesis for cathode process is put forward, regarding that the field emission dominates the initial stage and then thermionic emission takes over until the gap is filled with massive ions and electrons and the breakdown occurs. This would be of great benefit for better understanding of vacuum breakdown behavior at nanoscale.
机译:如今,随着电气设备的物理尺寸缩小到微米甚至纳米,电气绝缘问题引起了越来越多的关注。由于几乎所有的纳米结构和纳米器件都是由电偏压驱动的,因此在高电场下操作时确保良好的鲁棒性至关重要。因此,对于整个纳米结构和纳米器件的绝缘可靠性评估,了解整个真空纳米间隙的击穿行为非常重要。在目前的工作中,采用具有各种热性能的阴极材料,并利用基于扫描电子显微镜和压电纳米操纵器的原位纳米级放电测量系统在100 nm真空间隙内进行击穿测量。结果表明,Mo和W阴极的$ {IV} $曲线都显示出相似的趋势,通常可以将其视为三个阶段:泄漏暗电流阶段(几pA),电子发射阶段$(sim 2.0 nA)$。和故障发展阶段(几毫安)。此外,具有较高熔点的W阴极显示出的平均击穿阈值$(sim 241.2mathrm {V})$比Mo阴极$(sim 199.4mathrm {V})$大,这表明从阴极蒸发的金属原子蒸气在电子雪崩和击穿中起关键作用。结果,提出了阴极过程的假设,即场发射在初始阶段占主导地位,然后热电子发射接管直到间隙充满大量离子和电子并发生击穿。对于更好地了解纳米级的真空击穿行为,这将是非常有益的。

著录项

  • 来源
  • 会议地点 Budapest(HU)
  • 作者单位

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 10049, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cathodes; Nanoscale devices; Vacuum breakdown; Current measurement; Metals;

    机译:阴极;纳米级设备;真空击穿;电流测量;金属;;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号