首页> 外文会议>IEEE International Solid- State Circuits Conference >32.1 A 365fsrms-Jitter and -63dBc-Fractional Spur 5.3GHz-Ring-DCO-Based Fractional-N DPLL Using a DTC Second/Third- Order Nonlinearity Cancelation and a Probability-Density-Shaping ΔΣM
【24h】

32.1 A 365fsrms-Jitter and -63dBc-Fractional Spur 5.3GHz-Ring-DCO-Based Fractional-N DPLL Using a DTC Second/Third- Order Nonlinearity Cancelation and a Probability-Density-Shaping ΔΣM

机译:32.1使用DTC第二/三阶非线性取消和概率密度整形ΔΣM,365FSRMS-抖动和-63DBC分数型基于5.3GHz-Ring-DCO的分数-N DPLL和概率密度整形ΔΣm

获取原文

摘要

To maximize data-rates by combining more carrier components, 5G RF transceivers require many carrier frequencies, resulting in the situation of many LC PLLs occupying a large silicon area. Ring-oscillator-based digital PLLs (RO-DPLLs) with a fractional resolution obviously can be a good solution, but conventional $DeltaSigma$M-based PLLs hardly achieve a low enough jitter to satisfy the requirements of high-order modulations, such as 256-OAM. Currently, the use of a digital-to-time converter (DTC) to cancel the quantization noise (0-noise) is popular, but fractional spurs due to the nonlinearity of the DTC ($NL_{mathrm{D}mathrm{T}mathrm{C}}$) are a critical problem, especially for R0-DPLLs that require a wide bandwidth to suppress the RO jitter. The piecewise linearization of the DTC code can compensate for this $NL_{mathrm{D}mathrm{T}mathrm{C}}$ [1], but its effectiveness has a tradeoff with design resources. The time-invariant probability modulation (TIPM) [2] at the top of Fig. 32.1.1 is another method to cope with $NL_{mathrm{D}mathrm{T}mathrm{C}}$. lt uses a property that, if the DTC code is modulated such that its probability density function (PDF) is time-invariant (TI), the expected value of the output is constant even after experiencing $NL_{mathrm{D}mathrm{T}mathrm{C}}$ so that the generation of fractional spurs can be avoided. However, since the TIPM avoids spurs by spreading out their noise power, it cannot reduce the rms jitter (or IPN) itself. Moreover, the TIPM is valid only for $NL_{mathrm{D}mathrm{T}mathrm{C}}$ since its TI property is nullified when the two DTC paths are merged. Therefore, it is still vulnerable to the spurs caused by the interaction of the Q-noise, which could remain after the DTCs or be coupled directly through substrate/supply, with the nonlinearities of other circuits $(NL_{OC})$, and that includes the effects of parasitics and bond wires. The bottom of Fig. 32.1.1 shows that the TIPM effectively avoids spurs due to $NL_{mathrm{D}mathrm{T}mathrm{C}}$, but the IPN remains the same (left). When NLOC also is applied (middle), the expected value of the TDC output, $D_{mathrm{T}mathrm{D}mathrm{C}}$, varies over time, generating fractional spurs at $S_{OUT}$.
机译:通过组合多个载波分量最大化数据率,5G RF收发器需要许多的载波频率,从而导致许多LC锁相环占据大的硅面积的情况。基于环形振荡器的数字锁相环(RO-的DPLL)与分数分辨率显然可以是一个很好的解决方案,但常规$ -对于M德尔塔西格玛$锁相环难以达到足够低的抖动,以满足高阶调制的要求,如256-OAM。目前,使用一个数字 - 时间转换器(DTC)的取消量化噪声(0噪声)很受欢迎,但小数杂散由于DTC(的非线性$ NL _ { mathrm {d} mathrm { T】 mathrm {C}} $)是一个严重的问题,尤其适用于需要宽的带宽来抑制抖动RO R0-的DPLL。 DTC的代码的分段线性化可以补偿这种$ NL _ { mathrm {d} mathrm【T} mathrm {C}} $ [1],但其效力与设计资源的折衷。时间不变的概率调制(TIPM)[2]在图32.1.1的顶部是应对$ NL _ { mathrm {d} mathrm【T} mathrm {C}} $另一种方法。 LT使用属性,如果DTC码进行调制,使得其概率密度函数(PDF)是时不变(TI)时,输出的期望值甚至经历$ NL _ { mathrm {d} mathrm后是恒定的【T} mathrm {C}} $使得能够避免分数杂散的产生。然而,由于TIPM避免了马刺展开了他们的噪声功率,它不能减少均方根抖动(或IPN)本身。此外,TIPM仅对$ NL有效_ { mathrm {d} mathrm【T} mathrm {C}} $因为当两个DTC路径被合并其TI属性无效。因此,它仍然容易受到杂散由Q噪声的相互作用,这可能仍然是故障码后或直接通过底物/供应耦接,与其他电路的非线性造成$(NL_ {OC})$,和包括寄生和接合线的影响。图的底部。32.1.1表明TIPM有效地避免毛刺由于$ NL _ { mathrm {d} mathrm【T} mathrm {C}} $,但IPN保持相同(左侧)。当NL OC 也被施加(中),该TDC输出的预期值,$ d _ { mathrm【T} mathrm {d} mathrm {C}} $,随时间变化,在$ S_产生分数杂散{OUT} $ 。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号