首页> 外文会议>IEEE International Solid- State Circuits Conference >7.3 A 189×600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems
【24h】

7.3 A 189×600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems

机译:7.3 A 189×600后照明堆叠的SPAD用于汽车LIDAR系统的飞行时间深度传感器

获取原文

摘要

There have been many developments in Light Detection And Ranging (LiDAR) sensors used in Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) to measure the precise distance to an object, recognize the shape of an intersection, and classify road types. These LiDAR sensors can achieve fantastic results day and night without any loss of performance. In the past, Time-Correlated Single Photon Counting (TCSPC) and complete digital signal processing (DSP) have been used in to achieve a 100m range Time-of-Flight (ToF) sensor [1]. Background (BG) noise-rejection techniques [2] have been used to improve the signal-to-noise ratio (SNR), leading to detection of objects at a 6km range. Single Photon Avalanche Diode (SPAD)-based architectures implement per-pixel level histogramming, Time-to-Digital Conversion (TDC) and signal processing [3], [4]. Another ToF sensor has been shown that enables significantly higher resolution, $1200 imes 900$ pixels [5]. With the emerging need for a high-resolution solid-state LiDAR using a scanning 2D-SPAD array [6], we report a SPAD direct Time-of-Flight (dToF) depth sensor [1] –[5] to realize long-distance 300m range and high resolution over an automotive-grade temperature range of -40 to $125 ^{circ}{C}$. This microelectromechanical systems (MEMS)-based SPAD LiDAR can measure over ranges up to 150m with 0.1% accuracy for a 10%-reflectivity target and 200m with 0.1% accuracy for a 95%-reflectivity target. This paper presents a back-illuminated stacked SPAD dToF depth sensor deployed with passive quenching and recharge (PQR) front-end circuitry, TCSPC, and on-chip DSP. Under 117klux sunlight conditions, the MEMS-based SPAD LiDAR measures distances up to 200m with $168 imes 63$ resolution at 20 frames/s.
机译:在自动驾驶(AD)和高级驾驶员辅助系统(ADA)中使用的光检测和测距(LIDAR)传感器有许多开发,以测量到对象的精确距离,识别交叉点的形状,并分类道路类型。这些激光器传感器可以在没有任何损失的情况下实现梦幻般的结果日夜。在过去,已经使用时间相关的单光子计数(TCSPC)和完整的数字信号处理(DSP)来实现100米范围的飞行时间(TOF)传感器[1]。背景技术(BG)噪声抑制技术[2]已被用于改善信噪比(SNR),导致6km范围的物体检测。单个光子雪崩二极管(SPAD)基于架构实现每个像素电平直方图,时间转换(TDC)和信号处理[3],[4]。已经显示了另一个TOF传感器,可实现显着更高的分辨率,1200美元倍900 $像素[5]。随着使用扫描2D-SPAD阵列的高分辨率固态激光雷达的新兴需求[6],我们报告了一种直接飞行时间(DTOF)深度传感器[1] - [5]实现长 - 距离300米的范围和高分辨率在汽车级温度范围为-40至125美元^ { circ} {c} $。基于该微机电系统(MEMS)的SPAD LIDAR可以测量高达150米的范围,为10%-REFLEFECTIVE靶标的0.1%的精度,200米,为95%-REFLEFLECTIVE靶标的精度为0.1%。本文介绍了一种带有无源淬火和充电(PQR)前端电路,TCSPC和片上DSP的后照射堆叠的SPAD DTOF深度传感器。在117klux阳光条件下,基于MEMS的SPAD LIDAR测量高达200米的距离,168美元 Times 63 $ 20帧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号