首页> 外文会议>IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems >Machine learning based test pattern analysis for localizing critical power activity areas
【24h】

Machine learning based test pattern analysis for localizing critical power activity areas

机译:基于机器学习的测试模式分析,用于定位关键功率活动区域

获取原文

摘要

The identification of power-risky test patterns is a crucial task in the design phase of digital circuits. Excessive test power could lead to test failures due to IR-drop, noise, etc. This has to be avoided to prevent yield loss and chip damages. However, the accurate power simulation of all test patterns to identify power-risky patterns as well as to find critical areas within each pattern is not possible due to run time and resource constraints. An important task is therefore the selection of a subset of potentially power-risky patterns, which will be simulated in an accurate manner. In this paper, we propose an independent test pattern analysis methodology for the integration into an existing industrial design flow. The proposed test pattern analysis technique is a lightweight method based on the cell's Transient Power Activity (TPA) to identify potentially power-risky patterns. The method uses layout and power information to identify critical power activity areas using machine learning techniques. Experiments were performed on opensource benchmarks as well as on an industrial design. The results were correlated with commercial power and IR-drop simulation tools. The proposed methodology was found to be effective in terms of speed and localization of the critical areas for unsafe patterns.
机译:在数字电路的设计阶段,识别功耗风险测试模式是一项至关重要的任务。过多的测试功率可能会由于IR下降,噪声等导致测试失败。必须避免这种情况,以防止良率损失和芯片损坏。但是,由于运行时间和资源的限制,无法对所有测试模式进行准确的功率仿真以识别功率风险模式以及在每个模式内找到关键区域。因此,一项重要的任务是选择潜在的功率风险模式的子集,将以准确的方式对其进行仿真。在本文中,我们提出了一种独立的测试模式分析方法,用于集成到现有的工业设计流程中。所提出的测试模式分析技术是一种基于单元的瞬态功率活动(TPA)的轻量级方法,用于识别潜在的功率风险模式。该方法使用布局和电源信息通过机器学习技术来识别关键的电源活动区域。实验是在开源基准以及工业设计上进行的。结果与商用电源和IR-drop仿真工具相关联。发现所提出的方法在速度和对不安全模式的关键区域的定位方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号