首页> 外文会议>Physiology, Function, and Structure from Medical Images >Image-based biomechanical modeling of aortic wall stress and vessel deformation: Response to pulsatile arterial pressure simulations
【24h】

Image-based biomechanical modeling of aortic wall stress and vessel deformation: Response to pulsatile arterial pressure simulations

机译:基于图像的主动脉壁应力和血管变形的生物力学建模:对搏动性动脉压模拟的响应

获取原文

摘要

Image-based modeling of cardiovascular biomechanics may be very helpful for patients with aortic aneurysms to predict the risk of rupture and evaluate the necessity of a surgical intervention. In order to generate a reliable support it is necessary to develop exact patient-specific models that simulate biomechanical parameters and provide individual structural analysis of the state of fatigue and characterize this to the potential of rupture of the aortic wall. The patient-specific geometry used here originates from a CT scan of an Abdominal Aortic Aneurysm (AAA). The computations are based on the Finite Element Method (FEM) and simulate the wall stress distribution and the vessel deformation. The wall transient boundary conditions are based on real time-dependent pressure simulations obtained from a previous computational fluid dynamics study. The physiological wall material properties consider a nonlinear hyperelastic constitutive model, based on realistic ex-vivo analysis of the aneurismal arterial tissue. The results showed complex deformation and stress distribution on the AAA wall. The maximum stresses occurred at the systole and are found around the aneurismal bulge in regions close to inflection points. Biomechanical modeling based on medical images and coupled with patient-specific hemodynamics allows analysing and quantifying the effects of dilatation of the arterial wall due to the pulsatile aortic pressure. It provides a physical and realistic insight into the wall mechanics and enables predictive simulations of AAA growth and assessment of rupture. Further development integrating endovascular models would help evaluating non-invasively individual treatment strategies for optimal placement and improved device design.
机译:基于图像的心血管生物力学建模对于主动脉瘤患者预测破裂风险和评估手术干预的必要性可能非常有用。为了产生可靠的支持,有必要开发精确的针对患者的模型,这些模型可模拟生物力学参数并提供疲劳状态的单独结构分析,并将其表征为主动脉壁破裂的可能性。此处使用的特定于患者的几何形状源自腹部主动脉瘤(AAA)的CT扫描。计算基于有限元方法(FEM),并模拟壁应力分布和容器变形。壁瞬态边界条件基于从先前的计算流体动力学研究获得的实时相关压力模拟。基于对动脉瘤组织的现实离体分析,生理壁材料特性考虑了非线性超弹性本构模型。结果表明,AAA壁上的变形和应力分布复杂。最大应力发生在收缩期,并在靠近拐点的区域的动脉瘤凸起附近发现。基于医学图像并结合患者特定的血流动力学的生物力学建模可以分析和量化由于脉动主动脉压引起的动脉壁扩张的影响。它提供了对墙体力学的物理和现实见解,并能够进行AAA生长的预测模拟和断裂评估。集成血管内模型的进一步开发将有助于评估非侵入性个体治疗策略,以实现最佳放置和改善器械设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号