【24h】

Laser Writing of Color Centers in Silicon Carbide

机译:碳化硅色心的激光写入

获取原文

摘要

Optical properties of transparent silicon carbide (SiC) are attracting increasing attention due to its large bandgap,electronic properties, hardness and ability to work at high electrical power, qualities that make it a key material forsensors and electronic devices. Silicon carbide has only been recently discovered as a photonics material, as well forapplications in opto-mechanics. Further, fluorescent color centers that can produce single photon sources and spinqubits have been recently found relevant in applications in quantum technologies, as potential building block of theirelements. Additionally, applications are in sensitive magnetometry and thermometry. Most of the optically andspin active color centers in SiC are vacancies related emitters, such as the simplest silicon mono-vacancy (V_(Si)).Other vacancies related emission bands are due to complex vacancies structures such as the carbon antisite vacancy pairs(CAV) and divacancies (V_(Si)V_C). These color centers can be generated by electrons, ions, neutrons,proton irradiation and focused ion beams with subsequent annealing at specific temperatures to facilitate thediffusion of vacancies to form in order V_(Si), CAV and V_(Si)V_C, depending on the annealing temperature of 400°C, 900°Cand 1000°C, respectively. To advance technological applications, it will be necessary to integrate such color centerswithin optical and electronic components by, positioning them at the desired locations with an accuracy from 10 nm to 1μm. There are only few examples so far of integrated color centers in SiC nano-particles. Their localization in thematerial with the above described techniques is however still challenging, limited by ions struggle, creating residualdamage to the crystal lattice and degrading the properties of the color center. Other methods are sought after for a morecontrolled formation of defects with a control over their 3D spatial positioning. Recently, another successful method tocreate color centers in optical material has been based on the use of femtosecond laser writing, whereas single colorcenters in diamond and boron nitride were demonstrated, More recently a similar technique was used tocreate silicon mono-vacancies in SiC with the atomic precision of the single emitter level. The advantages ofusing femtosecond lasers for micro and nano-machining of bulk optical transparent materials, i.e. materials that do nothave any linear absorption at the wavelength of the femtosecond laser, rely on the possibility to fabricate geometricallycomplex structures in three dimensions, in compound substrates of different materials, with the possibility of fabricationof an ‘optical motherboard’, where electronic and photonic interconnects are fabricated.
机译:透明碳化硅(SiC)的光学性能因其较大的带隙而受到越来越多的关注, 电子特性,硬度和在高功率下工作的能力,这些使其成为制造汽车的关键材料的质量 传感器和电子设备。碳化硅直到最近才被发现是一种光子学材料, 在光机械中的应用。此外,可以产生单个光子源并自旋的荧光色心 量子比特最近被发现与量子技术的应用相关,因为量子比特的潜在组成部分 元素。另外,应用在灵敏磁法和测温法中。大部分在光学上和 SiC中的自旋有源色心是与空位相关的发射器,例如最简单的硅单空位(V_(Si))。 其他与空位相关的发射带是由于空位结构复杂,例如碳反位空位对 (CAV)和空位(V_(Si)V_C)。这些色心可以由电子,离子,中子, 质子辐照和聚焦离子束,随后在特定温度下退火,以促进 空洞的扩散以V_(Si),CAV和V_(Si)V_C的顺序形成,具体取决于退火温度400°C,900°C 和1000°C。为了推进技术应用,有必要集成这样的色心 通过将它们定位在光学和电子组件中,精度在10 nm到1之间 微米到目前为止,在碳化硅纳米颗粒中集成色心的例子很少。他们在 然而,具有上述技术的材料仍然具有挑战性,受到离子争夺的限制,产生了残留物。 损坏晶格并降低色心的性能。寻求其他方法以获取更多 通过控制缺陷的3D空间位置来控制缺陷的形成。最近,另一种成功的方法 在光学材料中创建色心是基于飞秒激光笔的使用,而单色 展示了金刚石和氮化硼的中心。最近,类似的技术被用于 以单发射极级的原子精度在SiC中产生硅单空位。的优点 使用飞秒激光对块状光学透明材料(即不包含透明材料的材料)进行微纳米加工 在飞秒激光的波长处具有任何线性吸收,取决于几何形状制造的可能性 三维结构的复杂结构,在不同材料的复合基板中,具有制造的可能性 的“光学主板”,其中制造了电子和光子互连。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号