首页> 外文会议>Conference on Diagnostic and Therapeutic Applications of Light in Cardiology >Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering
【24h】

Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

机译:结合粒子图像测速和基于光学镊子的血液控制的多模式体内血流传感

获取原文

摘要

All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.
机译:所有发达的生物都包含复杂的动脉,静脉和毛细血管等级网络。这些构成负责供应营养,气体和废物交换的心血管系统。与心血管系统有关的疾病是全世界死亡的主要原因之一。为了了解导致动静脉畸形的过程,我们研究了遗传性出血性毛细血管扩张症(HHT),该病在全球的患病率为1:5000,并引起内部出血。在斑马鱼中,HHT是由参与HHT的内皮糖蛋白基因突变诱导而来的,并观察到由于背主动脉(DA)和后主静脉畸形,红血球(RBC)减少流向尾部节间血管(ISV)。 PCV)。但是,这些毛细管仍然起作用。通过粒子图像测速仪(PIV)从斑马鱼胚胎的体内数据观察到了血流模式的变化。壁切速率(WSRs)和血流速度是通过非侵入性方式获得的,分辨率为毫秒。我们观察到受精后3天,内皮糖蛋白缺乏的斑马鱼胚胎(突变体)在DA中的血流速度显着增加。在PCV中,这种增加更为明显。我们发现与同胞(即未受影响的鱼)相比,突变鱼的DA和PCV之间的相似度增加。为了抵消ISV减少的RBC流量,我们采用了光镊(OT)。 RBC被引导到以前未灌注的ISV中,显示出每分钟RBC计数的显着增加。我们讨论有关光镊体内生物相容性的局限性以及与正常和内皮糖蛋白缺乏的斑马鱼胚胎相关的体内壁切应力(WSS)的确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号