首页> 外文会议>American Society for Composites technical conference;American Society for Composites >Comparison of Multiscale and Kernel-based Correlations for Stochastic Permeability Models in Composites Manufacturing
【24h】

Comparison of Multiscale and Kernel-based Correlations for Stochastic Permeability Models in Composites Manufacturing

机译:复合材料制造中随机渗透率模型的多尺度和基于核的相关性比较

获取原文

摘要

Computational models simulating liquid injection processes for composites manufacturingtypically invoke a porous medium representation of the fabric reinforcement material. Thisrepresentation is an abstraction of the real medium in which flowing, reacting, and cooling resininteracts with meandering fibers. Stochastic permeability models have traditionally beenintroduced in an effort to capture the effect of this heterogeneity as it varies over the specimens.The choice of a probabilistic model for this random permeability field has strong implications onthe statistical predictions relevant to cycle time, cost, and quality control. A standard approach toconstruct such a model is to assume it has a spatially invariant probability density function that isoften described by a log-normal distribution. A spatial correlation function is then appended to theprobabilistic structure by optimizing a covariance kernel over some predefined model class. Thisoptimization approach is typically limited to the porous medium abstraction and thus completelyignores subscale features that pertain to the mechanical and geometric properties of fibers, lay-up,and forming operations. We first obtain a multiscale mechanistic solution for the forming processthat characterizes the fiber shearing angles in terms of all of the subscale properties. We theninvoke constitutive relations to map these shearing angles onto the local principal components ofthe permeability tensor. By using a polynomial chaos methodology, we obtain an explicitstochastic expression between the subscale properties and the spatially varying permeability field.The resulting permeability field is non-stationary and is strongly influenced by boundaryconditions, geometry, and fiber properties. Its marginal distribution functions also exhibitsignificant spatial fluctuations. We construe this stochastic permeability field as being a goodrepresentation of reality, and using it, we then seek optimal representations against several classesof kernel-based covariance models.
机译:计算模型,模拟复合材料制造中的液体注入过程 通常会调用织物增强材料的多孔介质表示。这 表示是真实介质的抽象,其中流动,反应和冷却的树脂 与曲折的纤维相互作用。传统上,随机渗透率模型是 引入这种方法是为了捕获这种异质性的影响,因为这种异质性随样本的不同而不同。 对于该随机渗透率场的概率模型的选择对 与周期时间,成本和质量控制有关的统计预测。一种标准方法 构造这样的模型是假设它具有一个空间不变的概率密度函数,即 通常用对数正态分布来描述。然后将空间相关函数附加到 通过在某些预定义的模型类上优化协方差内核来实现概率结构。这 优化方法通常仅限于对多孔介质的抽象,因此完全 忽略与纤维的机械和几何特性,铺层, 和成型作业。我们首先获得成型过程的多尺度机械解决方案 根据所有子尺度的特性来表征纤维的剪切角。然后我们 调用本构关系将这些剪切角映射到的局部主成分上 渗透率张量。通过使用多项式混沌方法,我们得到了一个明确的 次尺度特性与空间变化的渗透率场之间的随机表达。 所产生的渗透率场是非平稳的,并且受边界的强烈影响 条件,几何形状和纤维特性。其边际分布函数也表现出 明显的空间波动。我们认为这种随机渗透率场是一个很好的 现实的表示,然后使用它,我们针对多个类别寻求最佳表示 基于核的协方差模型

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号