首页> 外文会议>Fusion Engineering 2005, Twenty-First IEEE/NPS Symposium on >Magnetic and Thermal Characterization of An ELM Simulating Plasma (ESP) With Helicon Pre-Ionization
【24h】

Magnetic and Thermal Characterization of An ELM Simulating Plasma (ESP) With Helicon Pre-Ionization

机译:具有螺旋预电离的ELM模拟等离子体(ESP)的磁学和热学表征

获取原文

摘要

Edge Localized Modes (ELMs) continue to be an obstacle in magnetic confinement fusion. The simulation of such ELM events using a conical theta pinch serves as a means to explore methods to manage these events in future experiments. For the purposes of pre-ionization before the pinch, a 100-200 W helicon source, (at pressures between 5-100 mTorr, in either hydrogen or argon) is employed. Plasma pinching is the result of pulsed current through a single turn conical copper coil from discharge of high voltage capacitors. Direction of current flow around the coil and hence the magnetic field direction from pinching, as compared to the steady state magnetic field, is such that the system lends itself to a field reversed configuration (FRC). Axial magnetic field measurements during the theta pinch at the location of the coil as well as at a target downstream are accomplished using a B-dot probe array. Steady state magnetic field topology was configured in order to optimize the transfer of the pinched plasma from the pinch coil to the target, as well as to simulate tokamak-level magnetic field strengths. Thermal heating of a small target by the RF and pinched plasmas as a means of measuring plasma energy deposition augments data taken using other diagnostics. This heating is observed using an RF-compensated in-situ thermocouple probe attached to the target assembly. Power and energy densities are estimated. RF power and capacitor discharge voltage are varied to illustrate target heating parameters. Optical spectroscopy is used for atomic line spectra measurements. The results of these experiments with the imposed conditions are discussed
机译:边缘局部化模式(ELM)继续成为磁约束聚变的障碍。使用锥形theta捏合对此类ELM事件进行仿真,是探索在未来的实验中管理这些事件的方法的一种手段。为了在收缩之前进行预电离,使用100-200 W的螺线管源(在5-100 mTorr的压力下,在氢气或氩气中)。等离子体收缩是高压电容器放电产生的通过单匝锥形铜线圈的脉冲电流的结果。与稳态磁场相比,电流在线圈周围的流动方向以及因此从收缩产生的磁场方向是这样的:系统使自身适合于磁场反转配置(FRC)。使用B点探针阵列可在线圈位置以及目标下游的θ收缩过程中进行轴向磁场测量。配置了稳态磁场拓扑结构,以优化收缩的等离子体从收缩线圈到目标的转移,并模拟托卡马克级的磁场强度。作为测量等离子体能量沉积的一种手段,通过射频和收缩等离子体对小靶进行热加热,可以增强使用其他诊断程序获得的数据。使用连接到目标组件的RF补偿原位热电偶探针观察到这种加热。估计功率和能量密度。改变射频功率和电容器放电电压以说明目标加热参数。光谱学用于原子线光谱测量。讨论了在强加条件下这些实验的结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号