首页> 外文会议>AIAA SciTech Forum and Exposition >A Hypothesis of Stall Hysteresis - Why the reattachment angle is less than the separation stall angle
【24h】

A Hypothesis of Stall Hysteresis - Why the reattachment angle is less than the separation stall angle

机译:失速滞后假说-为什么重新安装角小于分离失速角

获取原文

摘要

An explanation for the difference in separation and reattachment angle during stall on two-dimensional airfoils is offered here, utilizing stall prediction theory [1] and potential flow theory [2]. It is observed when an airfoil's angle of attack is increased beyond the angle for stall that the flow does not reattach at the same (separation) angle when lowering the angle of attack again. Here, the reattachment angle is defined as where the stalled flow regime is convected away, reestablishing an attached flow state. Whereas, the separation angle is the stall angle encountered when increasing the angle of attack during an attached flow state. The difference between the separation angle and the reattachment angle, or the size of the hysteresis loop, grows with Reynolds number. It is proposed that in the clockwise hysteresis loop there exist two distinct airfoil geometries: the physical and the effective. The physical, or actual airfoil geometry, dominates the behavior of the pre-catastrophic lift-curve. The effective body dominates the hysteresis loop from catastrophic stall to reattachment. The effective body, from the potential flow perspective, is the physical airfoil along with the recirculating wake behind it. This effective body "appears" as a longer, and therefore thinner airfoil, with possibly some negative camber. Numerical simulations are run to determine the shape of the effective body via minimum shear compared to the freestream. Stall prediction theory and experimental data are used to determine the stall angle of the effective body. It is found that, where hysteresis data is available for comparison, the reattachment angle of a given airfoil geometry agrees with the stall/separation angle of the associated effective body to within a fraction of a degree. Wind tunnel tests of the effective body of a NACA 0012 at Re = 4.75xl05 were conducted at the Doryland Wind Tunnel at Embry-Riddle Aeronautical University (ERAU) with excellent agreement. More tests are in progress for other Reynolds number on the NACA 0012. Future tests will include other geometries.
机译:本文利用失速预测理论[1]和势流理论[2]来解释二维机翼失速时分离角和重新附着角的差异。观察到,当机翼的迎角增加到超过失速角时,当再次降低迎角时,气流不会以相同(分离)角重新附着。在此,重新连接角度定义为对流失速状态被对流的位置,从而重新建立连接的流动状态。而分离角是在附加流动状态下增加迎角时遇到的失速角。分离角和重新安装角之间的差或磁滞回线的大小随雷诺数的增加而增大。建议在顺时针方向磁滞回线中存在两个不同的翼型几何形状:物理形状和有效形状。物理翼型或实际翼型几何形状主导着灾难前升力曲线的行为。有效的主体控制着从灾难性失速到重新附着的磁滞回线。从潜在流动的角度来看,有效物体是物理翼型以及其背后的再循环尾流。这种有效的机体“出现”的时间更长,因此也变得更薄,并可能带有一些负弯度。进行数值模拟以通过与自由流相比最小的剪切力来确定有效物体的形状。失速预测理论和实验数据用于确定有效物体的失速角。已经发现,在有滞后数据可用于比较的情况下,给定的翼型几何形状的重新附接角度与相关有效主体的失速/分离角一致,在一个程度的分数之内。在Emb = Riddle航空大学(ERAU)的Doryland风洞中进行了NACA 0012有效体在Re = 4.75xl05处的风洞测试,并获得了很好的认可。正在对NACA 0012上的其他雷诺编号进行更多测试。将来的测试将包括其他几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号