首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >LARGE EDDY SIMULATION OF BOUNDARY LAYER SEPARATION AND REATTACHMENT IN A LPT BLADE AT DIFFERENT INCIDENCE ANGLES
【24h】

LARGE EDDY SIMULATION OF BOUNDARY LAYER SEPARATION AND REATTACHMENT IN A LPT BLADE AT DIFFERENT INCIDENCE ANGLES

机译:不同入射角的LPT叶片边界层分离和重新附着的大涡模拟

获取原文

摘要

In order to predict the phenomenon of laminar flow separation, transition and reattachment in a high-lift low-pressure turbine (LPT), a self-developed large eddy simulation program to solve three dimensional compressible N-S equations was used to simulate the flow structures in T106A LPT blade passage. The outlet Mach number is 0.4 and the Reynolds number is 1.1×10~5 based on the exit isentropic velocity and the axial chord. The distributions of the time-averaged static pressure coefficient, kinetic loss coefficient and wall shear stress on the blade surface at +7.8° incidence angle agree well with the results of experiment and direct numerical simulation (DNS). The locations of laminar separation and reattachment point occur around 83.6% and 97% axial chord respectively. The evolutionary process of spanwise vorticity and large-scale coherent structure near the trailing edge on the suction side in one period indicates that the two-dimensional shear layer is gradually unstable as a result of spanwise fluctuation and Kelvin-Helmholtz (K-H) instability. The boundary layer separates from the suction surface and the hairpin vortex appears in succession, which leads to transition to turbulence. Analysis of the incidence angle effect on the boundary layer separation point as well as separation bubble scale was also performed. A small scale separation bubble exists around the leading edge at positive incidences. As the incidence angle changes from positive to negative, the separation bubble near the leading edge disappears and the boundary layer thickness reduces gradually. The separation point at the rear part of suction side moves downstream, yet the reattachment point barely changes. The Reynolds stress and turbulent kinetic energy profiles change dramatically at zero and positive incidence. This illustrates that the incidence angle has great influence on the development of the boundary layer and the flow field structures.
机译:为了预测高升程低压涡轮机(LPT)的层流分离,过渡和重新附着现象,采用自行开发的大型涡流仿真程序求解三维可压缩NS方程,以模拟流场中的流动结构。 T106A LPT刀片通道。基于出口等熵速度和轴向弦,出口马赫数为0.4,雷诺数为1.1×10〜5。叶片表面在+ 7.8°入射角处的时间平均静压系数,动损耗系数和壁切应力的分布与实验和直接数值模拟(DNS)的结果吻合得很好。层流分离和重新连接点的位置分别出现在轴向弦的83.6%和97%左右。在一个周期内,吸力侧后缘附近的翼展涡旋和大规模相干结构的演化过程表明,由于翼展方向波动和开尔文-亥姆霍兹(K-H)不稳定性,二维剪切层逐渐变得不稳定。边界层与吸力表面分离,并且发夹涡连续出现,这导致过渡到湍流。还分析了入射角对边界层分离点以及分离气泡尺度的影响。在前缘周围以正入射角存在一个小规模的分离气泡。当入射角从正变为负时,前缘附近的分离气泡消失,边界层厚度逐渐减小。吸入侧后部的分离点向下游移动,但重新连接点几乎没有变化。雷诺应力和湍动能分布在零入射和正入射时发生巨大变化。这说明入射角对边界层和流场结构的发展有很大的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号