首页> 外文会议>AIAA SciTech forum and exposition >Full-scale aeroelastic simulations of hovering bat flight
【24h】

Full-scale aeroelastic simulations of hovering bat flight

机译:悬停蝙蝠飞行的全尺寸气动弹性模拟

获取原文

摘要

In this paper, we study the aeroelastic behavior of a hovering bat using a three-dimensional variational fluid-flexible multibody framework. The aeroelastic framework consists of solving the coupled nonlinear interactions of flexible multiple components of the bat wing with the unsteady aerodynamics. To begin, we carry out the mesh convergence and compare the results of the presented formulation with the previous works on a flexible two-dimensional membrane subjected to low Reynolds number flow. We investigate the flapping dynamics of a full-scale bat using wing geometry and physical properties similar to the Pallas' long tongued bat Glossophaga soricina. The aeroelastic flexibility of the wing varies along its span and chord tending to a realistic bat wing, in contrast to the wing with uniform flexibility. We find that the flexible wings generate more unsteady lift compared to the rigid counterpart owing to the high wing-tip velocity due to the elastic deformation of the wings. Furthermore, we examine the time-varying vortex patterns and compare them with the experimental observations. We consider the effect of the anisotropic flexibility of the bone fingers and wing membranes on the aerodynamic lift as well as the vortex patterns generated by the flapping mechanism. Insights gained from the present study will be beneficial to develop novel designs for enhancing the maneuverability and flight agility of next-generation engineered flying vehicles (e.g., drones and micro-air vehicles) at low Reynolds number.
机译:在本文中,我们使用三维变分流体-柔性多体框架研究了悬停的蝙蝠的气动弹性行为。空气弹性框架包括用不稳定的空气动力学来解决蝙蝠翼柔性多个部件的耦合非线性相互作用。首先,我们进行网格收敛,并将所提出的公式的结果与先前在低雷诺数流下的柔性二维膜上的工作进行比较。我们使用类似于帕拉斯长舌蝙蝠Glossophaga soricina的机翼几何形状和物理特性,研究了全尺寸蝙蝠的拍打动力学。与具有均匀柔性的机翼相反,机翼的气动弹性沿着其跨度和弦而变化,趋于逼真的蝙蝠翼。我们发现,由于机翼的弹性变形导致机翼尖端速度高,因此与刚性的机翼相比,挠性机翼会产生更多的不稳定升力。此外,我们检查了时变涡流模式,并将其与实验观察结果进行了比较。我们考虑了骨指和翼膜的各向异性柔性对气动升力以及拍打机制产生的涡流模式的影响。从本研究中获得的见识将有助于开发新颖的设计,以提高低雷诺数的下一代工程飞行器(例如,无人机和微型飞机)的机动性和飞行敏捷性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号