首页> 外文会议>AIAA SciTech Forum and Exposition >Flow and Flame Dynamics in a Hydrocarbon-fueled Dual-Combustion Ramjet Engine
【24h】

Flow and Flame Dynamics in a Hydrocarbon-fueled Dual-Combustion Ramjet Engine

机译:碳氢燃料双燃烧冲压发动机的流动和火焰动力学

获取原文

摘要

The present work studies the flow and flame characteristics in the supersonic combust or of a dual-combustion ramjet engine. Numerical simulations are performed under both chemically-frozen and reacting conditions. The composition and temperature of the hot reactive mixture from the subsonic combustor (i.e. gas generator) are determined at three nominal equivalence ratios, 1.0, 2.0, and 3.0. Special attention is placed on the detailed flow evolution immediately downstream of the gas-generator exit, where complicate shock structures appear, and the compressible mixing layer is initiated. The mixture from the gas generator and the airflow from the isolator behave as under-expanded supersonic jets as they enter the supersonic combustor, creating expansion fans in the immediate downstream. The resultant overexpansion then induces oblique shock waves that reflect on the wall, the separated shear layers, or the Mach disks, leading to secondary shear layers. Behind the gas-generator exit nozzle rim that measures 2.7 cm in thickness, a recirculation zone is formed between two major shear layers that originate from the two incoming streams. The compressible mixing layer starts as these two shear layers merge at the tip of the recirculation zone. A distinctive "shock train" is observed, for the first time, between the inner shear layer and a secondary shear layer behind a Mach disk. After the chemically-frozen flows have achieved their steady state, chemical kinetics are activated. Since the rim of the gas-generator exit nozzle is large enough for the local flow residence time to be commensurate with the ignition delay time, stable combustion is established in the recirculation zone and spreads over the entire mixing layer. Two parameters are then proposed to measure the combustion completeness.
机译:本工作研究了超音速燃烧器或双燃烧冲压发动机中的流动和火焰特性。在化学冻结和反应条件下均进行了数值模拟。来自亚音速燃烧器(即气体发生器)的热反应混合物的组成和温度以三个标称当量比1.0、2.0和3.0确定。特别要注意的是气体发生器出口下游紧随其后的详细流动演变过程,在该过程中会出现复杂的冲击结构,并启动可压缩混合层。来自气体发生器的混合物和来自隔离器的气流在进入超音速燃烧室时表现为超音速射流,从而在紧邻的下游产生了膨胀风扇。然后,产生的过度膨胀会引起倾斜的冲击波,这些冲击波会在壁,分离的剪切层或马赫盘上反射,从而导致次级剪切层。在厚度为2.7 cm的气体发生器出口喷嘴边缘的后面,在源自两个进入流的两个主要剪切层之间形成了一个回流区。当这两个剪切层在再循环区的尖端合并时,可压缩混合层开始。首次在马赫盘后面的内部剪切层和次级剪切层之间观察到一种独特的“冲击波”。在化学冻结的流达到稳态后,化学动力学被激活。由于气体发生器出口喷嘴的边缘足够大,足以使局部流动停留时间与点火延迟时间相称,因此在再循环区内建立了稳定的燃烧,并在整个混合层中扩散。然后提出了两个参数来测量燃烧的完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号