首页> 外文会议>IEEE International Conference on Robotics and Automation >DFVS: Deep Flow Guided Scene Agnostic Image Based Visual Servoing
【24h】

DFVS: Deep Flow Guided Scene Agnostic Image Based Visual Servoing

机译:DFVS:基于深流引导的场景不可知图像的视觉伺服

获取原文

摘要

Existing deep learning based visual servoing approaches regress the relative camera pose between a pair of images. Therefore, they require a huge amount of training data and sometimes fine-tuning for adaptation to a novel scene. Furthermore, current approaches do not consider underlying geometry of the scene and rely on direct estimation of camera pose. Thus, inaccuracies in prediction of the camera pose, especially for distant goals, lead to a degradation in the servoing performance. In this paper, we propose a two-fold solution: (i) We consider optical flow as our visual features, which are predicted using a deep neural network. (ii) These flow features are then systematically integrated with depth estimates provided by another neural network using interaction matrix. We further present an extensive benchmark in a photo-realistic 3D simulation across diverse scenes to study the convergence and generalisation of visual servoing approaches. We show convergence for over 3m and 40 degrees while maintaining precise positioning of under 2cm and 1 degree on our challenging benchmark where the existing approaches that are unable to converge for majority of scenarios for over 1.5m and 20 degrees. Furthermore, we also evaluate our approach for a real scenario on an aerial robot. Our approach generalizes to novel scenarios producing precise and robust servoing performance for 6 degrees of freedom positioning tasks with even large camera transformations without any retraining or fine-tuning.
机译:现有的基于深度学习的视觉伺服方法使一对图像之间的相对相机姿态回归。因此,他们需要大量的训练数据,有时需要进行微调以适应新的场景。此外,当前的方法不考虑场景的基础几何结构,而是依赖于摄像机姿势的直接估计。因此,特别是对于远距离目标的相机姿势的预测中的不精确导致伺服性能的降低。在本文中,我们提出了两种解决方案:(i)我们将光流视为我们的视觉特征,可以使用深度神经网络对其进行预测。 (ii)然后将这些流量特征与另一个神经网络使用交互矩阵提供的深度估计进行系统地集成。我们还将在各种场景的逼真的3D模拟中提供一个广泛的基准,以研究视觉伺服方法的融合和一般化。我们显示了超过3m和40度的会聚度,同时在我们具有挑战性的基准上将精确定位保持在2cm和1度以下,而现有的方法在大多数情况下都无法收敛超过1.5m和20度。此外,我们还评估了在空中机器人上的真实场景的方法。我们的方法适用于新颖的场景,即使在不进行任何重新训练或微调的情况下,即使进行大型摄像机转换,也可以为6个自由度的定位任务提供精确而强大的伺服性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号