首页> 外文会议>SICE International Symposium on Control Systems >Global Trajectory Optimization Framework via Multi-Fidelity Approach Supported by Machine Learning and Primer Vector Theory for Advanced Space Mission Design
【24h】

Global Trajectory Optimization Framework via Multi-Fidelity Approach Supported by Machine Learning and Primer Vector Theory for Advanced Space Mission Design

机译:机器学习和底漆矢量理论支持的基于多保真方法的全球轨迹优化框架,用于高级太空任务设计

获取原文

摘要

With the advancement of space missions and increasing complexity of spacecraft systems, traditional development methods that rely on experience and past examples are approaching the limits. A flexible and robust design space search method based on a systematic approach is required to accomplish challenging space missions. This paper presents a global trajectory optimization framework via a multi-fidelity approach that utilizes a graphics processing unit (GPU) for low-fidelity initial solution search and a central processing unit (CPU) to determine high-fidelity feasible solutions compliant with imposed constraints. A mission scenario employing transfer from a near-rectilinear halo orbit (NRHO) to a low lunar orbit (LLO) is considered to demonstrate the proposed framework, which consists of the following specific processes: (1) identifying a multitude of feasible trajectories as potential global optimum solutions with the aid of super-parallelized trajectory propagation using single-precision GPU cores; and then (2) determining accurate trajectories by means of gradient-based optimization incorporating double-precision propagation using CPU cores. The resultant trajectories are assessed via machine learning to identify the clustering structure, and verified in the light of the primer vector theory that evaluates local optimality in terms of minimum fuel consumption.
机译:随着太空任务的发展和航天器系统日益复杂,依赖于经验和过去实例的传统开发方法正在接近极限。需要一种基于系统方法的灵活而强大的设计空间搜索方法来完成具有挑战性的太空任务。本文通过多保真方法提出了一种全局轨迹优化框架,该方法利用图形处理单元(GPU)进行低保真初始解搜索,并利用中央处理器(CPU)确定符合强加约束的高保真可行解。考虑从近直线光晕轨道(NRHO)转移到低月球轨道(LLO)的任务场景,以证明拟议的框架,该框架由以下特定过程组成:(1)确定多种可行的轨迹作为潜在轨迹通过使用单精度GPU内核的超并行轨迹传播实现全局最佳解决方案;然后(2)通过结合使用CPU内核的双精度传播的基于梯度的优化来确定准确的轨迹。最终的轨迹通过机器学习进行评估,以识别聚类结构,并根据引物矢量理论进行验证,该理论根据最小燃料消耗来评估局部最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号