首页> 外文学位 >A simulation based optimization approach to model and design life support systems for manned space missions.
【24h】

A simulation based optimization approach to model and design life support systems for manned space missions.

机译:用于载人航天任务的建模和设计生命支持系统的基于仿真的优化方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.
机译:本文考虑了载人航天任务的过程综合和生命支持系统设计问题。生命支持系统是通过提供氧气,饮用水和食物等基本生命支持元素来支持短期和长期航天飞行的人类生命的一组技术。系统的设计需要满足机组人员对基本生命维持要素(系统产品)的需求,并且必须处理机组人员产生的负荷。由于涉及的大多数技术仍在开发中,因此该系统存在许多不确定性。结果是模型参数的估计中存在很高的不确定性,例如回收率或过程效率。而且,由于系统内的高回收率,不确定性在系统内被放大和传播,从而导致复杂的问题。本文成功开发了两种算法来帮助生命支持系统的设计决策。该算法利用基于仿真的优化方法,该方法结合了随机离散事件仿真和确定性数学编程方法,以生成系统受控演化的多个唯一实现。使用时间序列数据挖掘技术和统计工具对时间表进行分析,以确定必要的技术,其部署时间表和能力以及在任务持续时间内支持机组人员生命和活动的必要基本生命维持要素。

著录项

  • 作者

    Aydogan, Selen.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号