首页> 外文会议>AIAA SciTech Forum and Exposition >Towards Global Stability Analysis of Flexible Aircraft in Edge-of-the-Envelope Flow
【24h】

Towards Global Stability Analysis of Flexible Aircraft in Edge-of-the-Envelope Flow

机译:朝着信封边缘流动中柔性飞机的全球稳定性分析

获取原文

摘要

Shock buffet on wings is a phenomenon caused by strong shock-wave/boundary-layer interaction resulting first in self-sustained flow unsteadiness and eventually in a detrimental structural response called buffeting. While it is an important aspect of aircraft design and certification, particularly for modern transonic air transport, not all of the underlying mul-tidisciplinary physics are thoroughly understood-yet very little work has been done in that direction on practical aircraft cases. This work builds upon the triglohal shock-buffet stability study by Timme [1] while aiming to investigate the impact of a flexible wing structure in these extreme flow conditions. The implementation of the coupled Jacobian matrix in an industrial solver enables the first triglobal stability analysis of a fluid-structure coupled system, utilising the implicitly restarted Arnoldi method with a sparse iterative Krylov solver and novel pre-conditioner. The chosen test case is the NASA Common Research Model for which both fluid modes on the rigid (yet statically deformed) wing and modes describing the dynamic aeroelas-tic behaviour (computed from a standard flutter analysis) guide the process. First, geometric asymmetry resulting from a static aeroelastic simulation based on a finite-element model of the wind-tunnel geometry modifies the global modes of the previous fluid-only symmetric full-span analysis. Second, flutter stability analysis at wind-tunnel flow conditions below shock-buffet onset finds no instability in the structural degrees of freedom, whereas in shock-buffet flow with globally unstable fluid modes additional marginally unstable structural (and fluid) modes are identified. Third, the coupled triglobal stability tool is indeed instrumental in identifying those physically dominant modes where a standard pk-type analysis fails. Together with our companion paper [2], we contribute to the question on how the presence of the flexible wing structure impacts on the otherwise pure aerodynamic three-dimensional shock-buffet dynamics.
机译:翅膀上的冲击自助式是由强烈的冲击波/边界层相互作用引起的现象,首先在自我持续的流动不稳定性中产生,最终处于称为副腐的有害结构应答。虽然它是飞机设计和认证的一个重要方面,但特别是对于现代跨安空中运输,并非所有的底层多地物理学都彻底了解,但在实际飞机案例上的方向上已经做得很少。这项工作基于Timme [1]的Triglohal休克式稳定性研究,同时旨在探讨柔性翼结构在这些极端流动条件下的影响。在工业求解器中的耦合Jacobian矩阵的实现使得流体结构耦合系统的第一触发稳定性分析,利用具有稀疏迭代Krylov求解器和新型预调节剂的隐式重新启动的Arnoldi方法。所选择的测试案例是NASA常见研究模型,其刚性(静态变形的)翼上的流体模式和描述动态曝气性TIC行为的模式(从标准颤动分析计算)指导该过程。首先,由基于风隧道几何的有限元模型的静态空气弹性模拟产生的几何不对称修改了以前流体对称全跨度分析的全局模式。其次,冲击自禁式发作以下风隧道流动条件下的颤动稳定性分析在结构程度的自由度中没有找不到不稳定性,而在具有全球不稳定的流体模式的缓冲自腹流量中,鉴定了额外的边缘不稳定的结构(和流体)模式。第三,耦合的触发稳定性工具确实有助于识别标准PK型分析失败的物理主导模式。与我们的伴文文件一起[2],我们为如何对柔性机翼结构的存在对诸如纯粹的空气动力学三维冲击自助式动力学产生影响的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号