首页> 外文会议>AIAA SciTech Forum and Exposition >Control of Flow Separation Over a Curved Surface using Fluidic Actuator Arrays with Variable Spanwise Periodicity
【24h】

Control of Flow Separation Over a Curved Surface using Fluidic Actuator Arrays with Variable Spanwise Periodicity

机译:使用流体致动器阵列在弯曲表面上控制流动分离,该致动器阵列具有可变的翼展周期性

获取原文

摘要

Control of a separation cell that forms in the cross flow over a nominally 2-D curved surface that models the suction surface of a VR-12 airfoil is investigated experimentally in a small-scale transonic wind tunnel. Actuation is effected by exploiting the unsteady interactions between spanwise arrays of fluidic oscillating jets of varying periodicity and vorticity concentrations within the separation cell. The effect of these interactions on the topology of the separated flow and its ultimate reattachment are investigated using high-resolution stereo particle image velocimetry with specific emphasis on the evolution of spanwise distributions and characteristic scales of engendered streamwise vorticity concentrations. The time-averaged flow exhibits nominally spanwise-periodic coupled counter-rotating streamwise vorticity concentrations whose spanwise wavelength and characteristic cross stream scale are commensurate with the periodicity of the actuation jets. It is remarkable that the unsteady shear flow associated with the actuation jets leads to the formation of multiple strands of small-scale streamwise vorticity concentrations of alternating signs within each of the "cores" of the time-averaged single-sense vortices. The streamwise vortical structures are accompanied by spanwise-alternating upwash and downwash regions between and along the axes of neighboring actuation jets, respectively, that lead to the formation of high and low concentrations of turbulent kinetic energy (TKE) as the advected vortical structures stretch into the cross flow. Surface oil visualization shows that the actuation divides the central domain of the separation cell into multiple smaller cells that are bounded by the streamwise vortices and terminate in the attached flow.
机译:在实验上实验研究在小型跨音风隧道中,通过标称2-D弯曲表面在字形上的2-D弯曲表面上形成在交叉流中形成的分离电池。通过利用分离细胞内不同周期性和涡流浓度的流体振荡射流的翼展阵列之间的不稳定相互作用来实现致动。使用高分辨率立体粒子图像速度研究,研究了这些相互作用对分离的流动拓扑的拓扑和其最终重新连接的效果,其具有特异性强调的始线分布的演化和具有发射的流动涡度浓度的特征尺度。时间平均流量表现出名义上跨越周期性的耦合反向旋转流动涡旋浓度,其始线波长和特征交叉流尺度与致动射流的周期性相称。与致动射流相关联的不稳定剪切流程是显着的,导致在时间平均单感涡流的“核心”中的每个“核心”中形成多条小型的小规模流动涡度集中。流动涡流结构分别伴随着沿相邻致动喷射器的轴线和沿着相邻致动射流的轴线之间的翼展交替的挤压区域,这导致形成高浓度的湍流动能(TKE),因为方向的涡流结构拉伸交叉流动。表面油可视化表明,致动将分离电池的中心结构域分成多个较小的细胞,该细胞由流动涡流界定并终止于附加的流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号