首页> 外文会议>Advanced automotive battery conference;Lithium battery chemistry symposium >Influence of Conductive Agent in Si/C-Composite Electrodes for High-Energy Lithium Ion Batteries at Different Cycling Conditions
【24h】

Influence of Conductive Agent in Si/C-Composite Electrodes for High-Energy Lithium Ion Batteries at Different Cycling Conditions

机译:不同循环条件下导电剂对高能锂离子电池硅/碳复合电极的影响

获取原文

摘要

Lithium ion batteries outperform other energy storage technologies in the combination of specific power and specific energy (1). However, continuous improvement is necessary regarding the ever-increasing demands in terms of high energy densities, long cycle life and improved safety properties. One strategy to increase the specific energy density of lithium ion batteries is the partial substitution of graphite with silicon in the negative electrode. Silicon forms alloys with lithium and offers an extremely high theoretical capacity (3579 mAh g-1) (2, 3). However, the lithiation and delithiation process of silicon generates mechanical stress due to particle swelling and contraction (ΔV≥300%) (4). This stress eventually causes mechanical fracture and pulverization, which in turn leads to active material loss and consequently to severe capacity fading. Inactive materials and the use of a composite of active materials, silicon and graphite (Si/C), can help to mitigate these degradation effects. The binder ensures adhesion and cohesion of and within the electrode and its different components. Conductive agents improve the electronical conductivity and provide inter-particle as well as particle-current collector contacts. However, an excessive amount of inactive material reduces the energy density of the electrode. Especially for high energy applications with graphite present in the composite, the necessity of conductive agent is debatable. Conductive agents do not only enhance the electronical conductivity, but also increase the overall surface area of the electrode. This in turn might require more binder amount and hence decrease the energy density. Furthermore, different cutoff voltages during cycling can have a positive effect on the overall cell performance, since lithiation of silicon and thus the volume expansion depends on the applied voltage. Here, the impact of conductive agent and the different cutoff voltages are investigated regarding the cell performance and electrical conductivity in high-energy Si/C-composite electrodes. For that, the amount of inactive material was optimized and electrodes were cycled at different cutoff voltages in coin cells (charge/discharge cycle).
机译:锂离子电池在比功率和比能量的组合方面优于其他储能技术(1)。然而,就高能量密度,长循环寿命和改善的安全性能而言,对于不断增长的需求,有必要进行持续改进。提高锂离子电池比能量密度的一种策略是在负极中用硅部分取代石墨。硅与锂形成合金,并具有极高的理论容量(3579 mAh g-1)(2,3)。但是,硅的锂化和脱锂过程会由于颗粒溶胀和收缩(ΔV≥300%)而产生机械应力(4)。该应力最终导致机械断裂和粉碎,进而导致活性物质损失,并因此导致严重的容量衰减。非活性材料以及活性材料硅和石墨(Si / C)的复合材料的使用可以帮助减轻这些降解作用。粘合剂确保电极及其不同组件之间以及在其内部和内部的附着力和内聚力。导电剂改善了电子导电性,并提供了颗粒间以及颗粒-集电器的接触。但是,过量的惰性材料会降低电极的能量密度。特别是对于复合材料中存在石墨的高能应用,是否需要导电剂是有争议的。导电剂不仅增强电子导电性,而且增加电极的总表面积。这反过来可能需要更多的粘合剂量,因此降低了能量密度。此外,由于硅的锂化以及因此体积膨胀取决于所施加的电压,因此在循环期间不同的截止电压可以对整个电池的性能产生积极影响。在此,针对高能Si / C复合电极中的电池性能和电导率,研究了导电剂和不同截止电压的影响。为此,优化了惰性材料的量,并在纽扣电池中以不同的截止电压对电极进行了循环(充电/放电循环)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号