首页> 外文会议>ASME international mechanical engineering congress and exposition >Flame Stability in Inverse Coaxial Injector using Repetitive Nanosecond Pulsed Plasma
【24h】

Flame Stability in Inverse Coaxial Injector using Repetitive Nanosecond Pulsed Plasma

机译:反向纳秒脉冲等离子反向同轴喷油器的火焰稳定性

获取原文

摘要

There has been recently a growing interest in the use of methane as a strong candidate for both interplanetary and descent/ascent propulsion solutions. The higher boiling point and higher density of methane compared with hydrogen, makes its storage tank lighter, cheaper and smaller to launch. Methane is abundant in the outer solar system and can be harvested on Mars, Titan, Jupiter, and many other planets and therefore, it can be used in reusable rocket engines. However, there are still some technological challenges in methane engines development path. Among those challenges, ignition reliability and flame stability are of great importance. These challenges can be addressed by integrating low-temperature plasma (LTP) through repetitive nanosecond pulsed (RNP) discharge to the injector design. This research work focuses on Air/CFU jet flames in a single-element coaxial shear injector coupled with RNP plasma discharge to study the influence of LTP on ignition characteristics and flame stability using advanced diagnostic techniques. The experiments have been performed for different fuel composition, jet velocities, discharge voltages and frequencies at atmospheric conditions. The transient flame behavior including flame oscillation is studied using direct photography by CMOS highspeed camera. The effect of plasma discharge location on flame stability is also investigated. To demonstrate the effectiveness of RNP discharge on liftoff and blowout/blowoff velocities, the jet velocity at the critical conditions is measured in terms of discharge frequencies and the enhancement of flame stability is then evaluated. The collected experimental data have shown that the RNP discharge can significantly extend the flame stability by reducing the liftoff height and increasing the velocity at which blowout/blowoff occurs.
机译:最近,人们对使用甲烷作为行星际和下降/上升推进解决方案的强大候选者的兴趣日益浓厚。与氢气相比,甲烷的沸点更高且密度更高,这使其储罐更轻,更便宜且发射更小。甲烷在外部太阳系中含量丰富,可以在火星,土卫六,木星和许多其他行星上收集,因此可以用于可重复使用的火箭发动机。但是,甲烷发动机的发展道路仍然存在一些技术挑战。在这些挑战中,点火可靠性和火焰稳定性非常重要。这些挑战可以通过将低温等离子体(LTP)通过重复的纳秒脉冲(RNP)放电注入喷射器设计中来解决。这项研究工作集中在单元素同轴剪切喷射器中的空气/ CFU喷射火焰与RNP等离子放电相结合,以使用先进的诊断技术研究LTP对点火特性和火焰稳定性的影响。已经针对大气条件下的不同燃料组成,喷射速度,放电电压和频率进行了实验。使用CMOS高速相机通过直接摄影研究了包括火焰振荡在内的瞬态火焰行为。还研究了等离子体放电位置对火焰稳定性的影响。为了证明RNP排放对升空和井喷/吹灭速度的有效性,根据排放频率测量了临界条件下的射流速度,然后评估了火焰稳定性的提高。收集的实验数据表明,RNP排放可通过降低升空高度并增加发生吹/吹的速度来显着延长火焰稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号