首页> 外文期刊>Journal of Energy Resources Technology >Flame Stability in Inverse Coaxial Injector Using Repetitive Nanosecond Pulsed Plasma
【24h】

Flame Stability in Inverse Coaxial Injector Using Repetitive Nanosecond Pulsed Plasma

机译:使用重复纳秒脉冲等离子体反向同轴注射器的火焰稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

Recently, methane has been investigated as a feasible fuel for propulsion systems. The higher boiling point and higher density of methane, compared with hydrogen, makes its storage tank lighter, cheaper, and smaller to launch. Methane is abundant in the outer solar system and can be harvested on Mars, Titan, Jupiter, and many other planets and therefore, it can be used in reusable rocket engines. However, there are still some technological challenges in the methane engines development path. For example, ignition reliability and flame stability are of great importance. These challenges can be addressed by integrating low-temperature plasma (LTP) through repetitive nanosecond pulsed (RNP) discharge to the injector design. This research focuses on air/CH4 jet flames in a single-element coaxial shear injector coupled with RNP plasma discharge to study the influence of LTP on ignition characteristics and flame stability using advanced diagnostic techniques. The experiments have been performed for different fuel composition, jet velocities, discharge voltages, and frequencies at atmospheric conditions. The transient flame behavior including flame oscillation is studied using direct photography by CMOS high-speed camera. The effect of plasma discharge location on flame stability is also investigated. To demonstrate the effectiveness of RNP discharge on liftoff and blow out/blow off velocities, the jet velocity at the critical conditions is measured and the enhancements of flame stability are then evaluated. The collected experimental data have shown that the RNP discharge can significantly extend the stability by reducing the liftoff height and increasing the velocity of blowout/blowoff phenomena.
机译:最近,已经研究了甲烷作为推进系统的可行性燃料。与氢相比,甲烷的沸点和较高密度较高,使其储罐更轻,更便宜,更小。甲烷在外太阳系统中丰富,可以在火星,泰坦,木星和许多其他行星上收获,因此可以在可重复使用的火箭发动机中使用。然而,甲烷发动机开发路径仍然存在一些技术挑战。例如,点火可靠性和火焰稳定性非常重要。通过将低温等离子体(LTP)通过重复的纳秒脉冲(RNP)排放到喷射器设计来解决这些挑战。本研究重点介绍一个单元素同轴剪切喷射器中的空气/ CH4喷射火焰,其与RNP等离子体放电耦合,研究LTP对使用先进的诊断技术的点火特性和火焰稳定性的影响。已经在大气条件下对不同的燃料组合物,喷射速度,放电电压和频率进行了实验。使用CMOS高速相机使用直接摄影研究包括火焰振荡的瞬态火焰行为。还研究了等离子体放电位置对火焰稳定性的影响。为了证明RNP放电对剥离和吹出/吹扫速度的有效性,测量临界条件下的喷射速度,然后评估火焰稳定性的增强。收集的实验数据表明,RNP放电可以通过减少剥离高度并增加井喷/吹出现象的速度来显着延伸稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号