首页> 外文会议>ASME Internal Combustion Engine Division Technical Conference >A Computational Investigation of the Impact of Multiple Injection Strategies on Combustion Efficiency in Diesel-Natural Gas Dual Fuel Low Temperature Combustion Engine
【24h】

A Computational Investigation of the Impact of Multiple Injection Strategies on Combustion Efficiency in Diesel-Natural Gas Dual Fuel Low Temperature Combustion Engine

机译:柴油-天然气双燃料低温燃烧发动机多重喷射策略对燃烧效率影响的计算研究

获取原文

摘要

Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and paniculate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ~30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.
机译:多个研究小组对双燃料柴油-甲烷低温燃烧(LTC)进行了研究,与传统技术相比,它显示出减排潜力很大(尤其是氮氧化物(NOx)和颗粒物(PM)),而不会不利地影响燃料转换效率柴油燃烧。但是,当在低负载条件下运行时,双燃料LTC通常表现出较差的燃烧效率。此行为主要是由于在稀薄条件下低的总体气体温度导致不可接受的高一氧化碳(CO)和未燃烧的碳氢化合物(UHC)排放。一种可行且颇具创新性的解决方案可能是将液体燃料的先导喷射分成两个喷射脉冲,一旦过程由第一个启动,则第二个先导喷射支持甲烷燃烧。在这项工作中,在单缸重型发动机中对柴油-甲烷双燃料LTC进行了数值研究,该发动机在5 bar制动平均有效压力(BMEP)下被甲烷的能量替代(PES)占85%和75%(取值)作为天然气的替代品)。首先将多维模型与在同一个单缸发动机上以310 CAD和500 bar导轨压力进行早期单飞行员柴油喷射的实验数据进行比较。以单次引燃为例,研究了多次引燃和不同轨压对燃烧排放的影响,再次表明与实验数据吻合良好。数值模型可以正确捕获表观的放热率和气缸压力历史以及燃烧效率趋势。结果证明,较高的钢轨压力可将HC和CO分别减少90%和75%,但以NOx排放为代价,与基准相比增加了约30%。此外,显示出,由于燃烧过程被限制在靠近柴油喷芯的位置,因此在膨胀冲程期间的后喷射不支持燃烧前沿的稳定发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号