【24h】

COMPUTATIONAL CREATIVITY VIA ASSISTED VARIATIONAL SYNTHESIS OF MECHANISMS USING DEEP GENERATIVE MODELS

机译:使用深度生成模型通过机制的变分综合进行计算创新性

获取原文

摘要

Computational methods for kinematic synthesis of mechanisms for motion generation problems require input in the form of precision positions. Given the highly non-linear nature of the problem, solutions to these methods are overly sensitive to the input - a small perturbation to even a single position of a given motion can change the topology and dimensions of the synthesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of maneuvering precision positions in the hope of finding good solutions. In this paper, we present a deep-learning based framework which manages the uncertain user input and provides the user with a higher level control of the design process. The framework also imputes the input with missing information required by the computational algorithms. The approach starts by learning the probability distribution of possible linkage parameters with a deep generative modeling technique, called Variational Auto Encoder (VAE). This facilitates capturing salient features of the user input and relating them with possible linkage parameters. Then, input samples resembling the inferred salient features are generated and fed to the computational methods of kinematic synthesis. The framework post-processes the solutions and presents the concepts to the user along with a handle to visualize the variants of each concept. We define this approach as Variational Synthesis of Mechanisms. In addition, we also present an alternate End-to-End deep neural network architecture for Variational Synthesis of linkages. This End-to-End architecture is a Conditional-VAE (C-VAE), which approximates the conditional distribution of linkage parameters with respect to coupler trajectory distribution. The outcome is a probability distribution of kinematic linkages for an unknown coupler path or motion. This framework functions as a bridge between the current state of the art theoretical and computational kinematic methods and machine learning to enable designers to create practical mechanism design solutions.
机译:用于运动产生问题的机构的运动学综合的计算方法需要以精确位置的形式输入。考虑到问题的高度非线性性质,这些方法的解决方案对输入过于敏感-即使对给定运动的单个位置进行很小的扰动,也可能会极大地改变合成机构的拓扑和尺寸。因此,合成成为操纵精确位置的盲目迭代过程,希望找到好的解决方案。在本文中,我们提出了一个基于深度学习的框架,该框架可以管理不确定的用户输入,并为用户提供对设计过程的更高级别的控制。该框架还使用计算算法所需的缺少信息来估算输入。该方法首先使用称为变分自动编码器(VAE)的深度生成建模技术来学习可能的链接参数的概率分布。这有助于捕获用户输入的显着特征并将它们与可能的链接参数相关联。然后,生成类似于推断的显着特征的输入样本,并将其输入到运动学综合的计算方法中。该框架对解决方案进行后处理,并向用户呈现概念以及用于可视化每个概念变体的手柄。我们将这种方法定义为机制的变异综合。此外,我们还提出了一种替代的端到端深度神经网络体系结构,用于链接的变体综合。这种端到端的体系结构是一个条件式VAE(C-VAE),它相对于耦合器轨迹分布来近似链接参数的条件式分布。结果是未知连杆路径或运动的运动学链接的概率分布。该框架充当当前理论和计算运动学方法与机器学习之间的桥梁,使设计人员能够创建实用的机构设计解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号