首页> 外文会议>AIAA aviation forum >Fabrication, surface integration and testing of miniaturized dielectric barrier discharge plasma actuators for active flow control applications
【24h】

Fabrication, surface integration and testing of miniaturized dielectric barrier discharge plasma actuators for active flow control applications

机译:用于主动流量控制应用的小型介电势垒放电等离子体致动器的制造,表面集成和测试

获取原文

摘要

We present the realization and characterization of miniaturized dielectric barrier discharge (DBD) based plasma actuators (PA) by means of microelectromechanical systems (MEMS). Different organic and inorganic dielectric materials and electrode metals have been tested with respect to their resistance against low-temperature plasma. To make the actuator samples scalable and applicable to any desired shape we developed an embedding method to integrate the micro actuator in modern carbon/glass fiber reinforced polymer (CFRP/GFRP) materials to meet the requirements of modern aviation and automotive bodywork. In this context, we further show that the realization of PA can even be carried out on flexible inorganic foils. Additionally, microfabrication methods give the possibility of introducing a serrated high voltage electrode with which the plasma formation can be facilitated at the peaks due to a local field enhancement. Measurements of the induced airflow obtained by a Pitot tube show similar velocities as known from macroscopic actuators. We observed that the ionic wind flow is limited in the case when the actuators are placed too close together. This is attributed to a mutual influence of the electric field configuration resulting in lower total electric field strength.
机译:我们介绍了通过微机电系统(MEMS)的基于微型介电势垒放电(DBD)的等离子体致动器(PA)的实现和表征。已经针对有机和无机介电材料以及电极金属对低温等离子体的抗性进行了测试。为了使执行机构样品可扩展并适用于任何所需形状,我们开发了一种嵌入方法,将微执行机构集成到现代碳/玻璃纤维增​​强聚合物(CFRP / GFRP)材料中,以满足现代航空和汽车车身的要求。在这种情况下,我们进一步表明,PA的实现甚至可以在柔性无机箔上进行。另外,微细加工方法提供了引入锯齿状高压电极的可能性,由于局部电场的增强,利用该锯齿状高压电极可以在峰值处促进等离子体的形成。通过皮托管获得的诱导气流的测量结果显示出与宏观执行器相似的速度。我们观察到,当执行器放置得太近时,离子风会受到限制。这归因于电场配置的相互影响,导致较低的总电场强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号